SpecEdit: Projectional Editing for TLA+
Specifications

Riwan Cuinat
ENSTA Bretagne
Brest, France
riwan.cuinat@ensta-bretagne.org

Abstract—High quality requirements and specifications are
the premises of efficient software system engineering. Formal
approaches propose precise and unambiguous requirements
amenable to automated reasoning. TLA+, for instance, is used by
major companies, such as Microsoft and Amazon, to specify high-
profile business critical systems. However, despite its undeniable
strengths for the specification of complex distributed systems,
TLA+ suffers from the duality of its syntax, which is likely to
hamper its large-scale industrial adoption. A system engineer
can easily read mathematical specifications in TLA+, produced
through I#IgX. However, for writing TLA+ specifications, he
must learn the discommoding ASCII syntax, which requires
unnecessary effort and dedicated learning time.

This paper introduces SpecEdit, an IDE for TLA+ with a
projectional editor that solves this issue. SpecEdit exposes the
mathematical syntax of TLA+ for both reading and writing
specifications, without requiring external transformations. This
approach minimizes the cognitive effort and streamlines the
formal system specification process. We illustrate the benefits
of our approach using the specification of the Elasticsearch
cluster coordination module. We furthermore emphasize the com-
plementarity with the existing TLA+ tools. Through SpecEdit,
TLA+ gains the specification editor that was missing without
compromising compatibility with the existing tools.

Index Terms—TLA+, projectional editor, formal specifications

I. INTRODUCTION

To reach the goal of automatically analyzed requirements, a
formalization is required and the resulting expressions must be
closer to the expertise domain of the engineers. As noticed by
formal methods users on industrial cases [1], formal specifica-
tion based on simple discrete math with basic set theory and
predicates notation is quite familiar to engineers. Numerous
research efforts address this challenge through mathematical
formalism equipped with powerful tools for reasoning and
handling specifications [2].

Temporal Logic of Actions (TLA+) is a formal specification
language created by Leslie Lamport [3]. TLA+ defines a tem-
poral logic based on set theory that facilitates the specification
of dynamic systems. TLA+ specifications are amendable to
formal verification either through model-checking via TLC [4]
or theorem proving using TLA+ Proof System (TLAPS) [5].
Particularly well adapted for the specification of distributed
systems, TLA+ has been successfully used in both academia
and industry. Amongst its industrial uses, we can cite its usage
in production, for capturing the design requirements of todays

Ciprian Teodorov
Lab-STICC, ENSTA Bretagne
Brest, France
ciprian.teodorov@ensta-bretagne.fr

Joel Champeau
Lab-STICC, ENSTA Bretagne
Brest, France
joel.champeau @ensta-bretagne.fr

most influential cloud infrastructures, S3 from Amazon [1],
Azure from Microsoft [6] and Elasticsearch [7].

The transition from natural language requirements to formal
specifications is not always as smooth as end-users might want
it to be, even when provided with adequate analysis tools.
As observed by Green [8], the alignment of the language
with the domain greatly influences the ability to effectively
express facts in that domain. In the case of TLA+, the language
concepts and semantics are directly mapped to mathematics,
offering the premises for both formalization and automation.
However, at the syntactic level, TLA+ suffers from the duality
of its syntax, which introduces a gap between the conceptual
view of the specification and its encoding in ASCII. According
to Green, this duality entails an arduous cognitive dimension
[8] for the specification designer.

Moreover, TLA+ is targeted at non-programmers. Leslie
Lamport answered in 2014 to some user’s feedback [9]:

“As for the “pretty-printed” version versus the
ASCII, a TLA+ user at Intel wrote that one of
the good things about TLA+ is that if he doesn’t
understand what a TLA+ construct means, he can
look it up in a math book. Math books don’t write
math in ASCII, they use standard mathematical
symbols. I want TLA+ users to think in terms of
math, which means thinking in terms of its symbols.
You will soon get to be bilingual, reading math and
its TLA+ ASCII versions equally well.”

He indicated at the time that it is inconceivable to give up
the mathematical affiliation of TLA+, and that it is therefore
inevitable to keep the mathematical notation in parallel with
the code written in ASCII. This leads us to the following re-
search question: Is it possible to hide TLA+’s syntax duality
in a viable bilingual Integrated Development Environment
(IDE) to reduce the mental efforts of system engineers?
Such an IDE would expose only the mathematical syntax
to the user, translating it to the ASCII version for ensuring
compatibility with the existing tools.

At first glance this does not seem so trivial because the
input device we use, the keyboard, does not allow for the
direct input of special characters, like €. Furthermore, the use
of the Unicode ID (U+2208) or of complex key combinations
needed for writing the corresponding Unicode characters are
no better solution.

This paper introduces SpecEdit, an IDE with a projectional
editor for TLA+ that solves this problem. SpecEdit lets the
designer use standard mathematical symbols in the specifica-
tions. This approach is meant to minimize the mental effort
and streamline the formal system specification process.

We illustrate the benefits of our approach using the openly
available specification of the cluster coordination of Elas-
ticsearch. We furthermore assess the complementarity of
SpecEdit with respect to the existing TLA+ tools and empha-
size some of the advantages of projectional editors for writing
formal requirements and specifications.

Section II describes the issue addressed in this paper while
presenting the related work. Section III presents SpecEdit’s
architecture discussing some of the difficulties encountered.
Section IV illustrates our approach on a practical case-study
and discusses its complementarity with the existing tools.
Finally, Section V concludes this paper giving some future
research directions.

II. BACKGROUND AND RELATED WORK

The first part of this section introduces the TLA+ specifi-
cation language, and the associated tools while underlying the
syntax duality, which creates a gap between the conceptual
specification and its TLA+ equivalent. In the second part,
we overview the basics of domain-specific languages (DSL)
design, emphasizing the relation to the problem addressed.

a) TLA+ Language and Ecosystem: TLA+ is a high-level
specification language based on set theory and predicate logic,
enriched with temporal logic primitives [3]. This combination
of features renders the language well adapted for specifying
and reasoning on complex dynamic systems, represented as
sets of behaviors. The TLA+ syntax thus naturally finds its
roots in mathematical notation and features more than 80 non-
ASCII mathematical symbols. Concise but expressive, easy
to write on paper and well understood by engineers, the
mathematical syntax is however historically not well supported
by text editors and IDEs. For TLA+, this led to the fallback of
using mnemonic ASCII words, similar to the TEX notation.
Consider, for instance, the subset operator *C’ (U+2286 in
Unicode), which is represented by the \subseteq mnemonic
in the TLA+ syntax. Although listed in the language documen-
tation [10], these mnemonics considerably steepen the learning
curve, due to the need to lookup the notation corresponding to
the wanted symbol. Moreover, once the mnemonic is inserted,
the specification designer either has: a) to become accustomed
with thinking in terms of ASCII notation or, b) to continuously
generate and compile the I&TEX-based PDF representation of
the specification.

The TLA+ Toolbox [11], is a free and open-source IDE
for TLA+. The TLA+ Toolbox provides a set of tools for
manipulating TLA+ specifications: a) specification editor; b)
explorer, for specification navigation; ¢) model editor, for
extracting closed specifications for model-checking; d) trace
explorer, for trace-based diagnosis. The TLA+ Toolbox is
coupled with the TLC model-checker [4] and TLAPS [5] to

create a state-of-the-art formal specification ecosystem. How-
ever, the specification editor lacks not only the much needed
mathematical symbols but also most of the features proposed
by the current IDEs [12] and implemented in SpecEdit.

b) Domain-Specific Language Design: Domain-specific
language design focuses on finding a common language ca-
pable of finely capturing a domain of interest. From this
perspective, TLA+ can be seen as a DSL for specifying
interacting dynamic systems (distributed systems). The two
main ingredients of a domain-specific language design are
syntax and semantics. The syntax defines the words in the
language, either conceptually (abstract syntax) or concretely
(concrete syntax). Semantics gives meaning to the words. To
facilitate the formalization of semantics usually an abstract
syntax is defined (a metamodel), which captures a conceptual
view of the words of the language. In this case, the concrete
syntax only establishes an interface between the DSL user and
the abstract syntax. The abstract syntax is a pivot language
on which we can define multiple views (concrete syntaxes).
In this study, we are particularly interested in the interface
(concrete syntax) between the specification designer and the
TLA+ language.

Typically, to ease the implementation effort, the concrete
syntax definition is based on compiler-compiler tools, such
as ANTLR (ANother Tool for Language Recognition) [13]
to transform a grammatical definition of the syntax to a
parser, which instantiates the abstract syntax. The TLA+
syntax problem can be partially solved by defining a Unicode-
based grammar, which uses mathematical symbols. However,
to address the Unicode symbol input problem, the user will
still have to rely on mnemonics interpreted by the text editor.

Intentional programming [14], offers another solution for
implementing the concrete syntax of DSLs through the use
of projectional editors. Projectional editors allow the direct
use of the abstract syntax. To view the model, the abstract
syntax is projected on a user interface (a view is created).
To instantiate the needed model elements the user intention
is projected to abstract syntax operations via User Interface
actions. JetBrains’ MetaProgramming System (MPS) [15] of-
fers a DSL design workbench based on projectional editing.
The produced editors allow the mixing of graphical, textual
and mathematical notation, which is particularly adapted for
the syntax problem of TLA+. Moreover, the modularity of
projectional editing allows the creation of various model views
enabling further specialization of the TLA+ editor.

III. A PROJECTIONAL EDITOR FOR TLA+

This section overviews the architecture of SpecEdit dis-
cussing the creation of a basic projectional editor as well
as the improvements needed for a better user experience and
compatibility of the IDE with existing tools.

A. SpecEdit’s Architecture

SpecEdit solves the syntax duality problem of TLA+ by
providing an IDE with a projectional editor integrating mod-
ern features such as syntax highlighting and autocompletion.

displayedBy

!

Projectional Editor

instantiates conformsTo

TLA+ Model —— > TLA+ Metamodel

¢uses usedBy instantiates
Free editing instantiates
uses uses
PasteHandler — > Grammar
Reference
Resolution
uses
Clipboard AN
Y
uses ; uses
Writer e ReEisiEne: Reader

Model

XML File AN

Existing TLA+ Tools

SANY TLC TLA2Latex

Fig. 1. Underlying architecture of SpecEdit

Furthermore, SpecEdit offers a flexible backend that preserves
the compatibility with the existing tools.

An overview of the high-level architecture of SpecEdit is
shown in Figure 1. In the Figure, the core components of
SpecEdit are emphasized by the green (representing metamod-
els) and blue boxes (representing the tools). The Projectional
Editor displays the TLA+ model that is instantiated based on
user input. As usual, the model conformsTo the metamodel.
For SpecEdit, we created a syntax-driven TLA+ metamodel, to
finely capture user intentions. SpecEdit supports Free editing
and Reference resolution, besides other features inherited
from the underlying language workbench, such as syntax
highlighting and refactoring (not shown in the Figure). The
backend is composed of the PasteHandler, the Writer, and
the Reader. The PasteHandler enables on-the-fly conversion
from ASCII TLA+ specifications (stored in the clipboard) to
instantiated TLA+ model nodes. The Writer represents the
serialization modules, which, based on the Persistence model,
outputs different file-based representations of the model. The
Reader represents the file-input modules, which can instantiate
the TLA+ Model according to the Persistence model (and after
parsing the files according to the respective Grammar rules).
SpecEdit supports copy-paste, both internally by exchanging
AST nodes through the Writer-Clipboard-Reader path, and
externally by processing plaintext coming from the system
clipboard via the PasteHandler. SpecEdit backend supports
TLA+ ASCII files (which is the standard supported by the
existing TLA+ tools) and an XML-based serialization format
(easy to parse, internal format).

SpecEdit is implemented with the MPS language work-
bench, a mature, commercially supported technology for DSL
design, which facilitates the creation of IDEs with a projec-
tional editor. The first step towards the creation of an IDE

<default> editor for concept Module
node cell layout:
[_
———— MODULE | { | ModuleName |} --—-
?2[— EXTENDS % SetO0fModuleNames % —]
(— % SetOfUnits % /empty cell: <default> -)

!

Fig. 2. MPS Editor definition for TLA+ Module

with a language workbench, such as MPS, consists in the
definition of the language (abstract syntax, concrete syntax,
pretty-printing) with the tools of the workbench. Section III-B
describes the process of defining TLA+ as a Language in MPS.

Projectional editors rely extensively on the abstract syntax,
and allow direct editing of the underlying model. Users do
not write code, but they instantiate metamodel elements (AST
nodes) via numerous specialized editors. MPS gives the pos-
sibility to use the completion menu to select a new node to be
instantiated. MPS will thus show, in the menu, only nodes that
can be instantiated at the cursor position. However, this process
is slow and very frustrating when not combined with free
editing. To overcome this limitations, SpecEdit implements
free editing support on top of the MPS specialized editors. Free
editing, combined with Reference Resolution (Section III-C),
optimizes the user experience.

By default, MPS saves models as XML files, which are
easy to parse and manipulate programmatically. However, to
ensure the compatibility with the existing TLA+ tools, two
custom modules were created, namely a PasteHandler and a
custom ASCII persistence model (section III-D).

B. Basic Projectional Editor for TLA+

Since MPS frees programmers from defining a grammar
for their languages, the MPS Structure Language is provided
as an alternative. Concepts in MPS, defined via the Structure
Language, represent the abstract syntax (types and hierarchy of
AST nodes) and they reference children nodes, parent nodes,
properties (of primary data types), etc.

To define the underlying language metamodel in MPS, the
TLA+ grammar (defined explicitly in [10]) was converted
into a set of MPS Concepts. The extraction of the language
Concepts from the concrete syntax resulted in a metamodel
with 110 interconnected Concepts.

For the definition of the concrete syntax, each Concept
was associated with a specific MPS Concept Editor. From
the model-view-controller design-pattern perspective, these
Concept Editors play the role of “views” and “controllers”
for the associated language Concepts (“models”). An Editor
is described by the cells it is composed of, like a template.
Figure 2 illustrates an Editor for a TLA+ Module. In blue
are represented read-only fields. ModuleName designates a
mandatory string that must be entered by the user, SetOfMod-

<defanlt> editor for concept CaseRrm
node cell layout:
[- % Exprl % — % Expr2 % -]

Fig. 3. MPS Editor definition for TLA+ CaseArm

Prefiz(lp Tok({ “=", “=", *\1not”, “\neg”, “[1", “<>", “DOMAIN",
“ENABLED”, “SUBSET", “UNCHANGED". “UNION"})
enumeration PrefixOp I ‘
*+ Dash = DOMATN
* Neg = ENABLED
* Square L
« Diamond < SUBSET
« DOMATIN DOMA TN UNCHANGED
*» ENABLED ENABLED
*» SUBSET UNION
* UNCHANGED UNCHANGEL =
* UNION UNION 0
default member: null o

Fig. 4. MPS Enum for TLA+ PrefixOp

uleNames optional strings and SetOfUnits a set of expressions
and statements that may constitute the TLA+ Module.

Since Unicode characters are supported by MPS, they were
used to customize the Editors and thus to obtain a rendering
that integrates the mathematical notation. In Figure 3, the case
branch is automatically instantiated, by the customized Editor,
with an — (instead of the ASCII —>) as a read-only field.

To allow users to insert symbols, in fields that accept
inputs (direct input or completion), MPS Enums were used.
Enumerations in MPS allow to define properties with values
from pre-defined sets. The possible values are shown, in a
context-menu, if the given values can be inserted at the current
cursor position according to the metamodel. Figure 4 shows
the mapping between the TLA+ grammar rule “PrefixOp”
(top) and the corresponding MPS Enum node (left) as well
as the rendering in the completion menu when prompted to
users (right). Note for instance the suggestion of the ¢ symbol,
representing an eventuality in temporal logic, instead of the
<> string.

C. Customization of user experience

This section discusses the solutions implemented in
SpecEdit for free editing and reference resolution support.

1) Free editing: In MPS, by default, free editing is prohib-
ited. This means, that, unless the user is given a predefined
box, users cannot use the keyboard to write code. To allow
free editing, programmers have to make fields editable in
MPS Editors. Once editable, users will be able to write

show 1if (editorContext, node)->boolean {
node.5et0fModuleNames .ListM.isNotEmpty;
}
action
text (editorContext, node, model, pattern)->string {
"EXTENDS"; }
can execute <always>

execute (editorContext, nocde, model, pattern)->veid {

neode.5e add new (ExtendedModuleName) ;

nede.se first.select
[in: editorContext, cell: MOST_RELEVANT, selectionStart: -1];

}

Fig. 5. Example of optional field management with TLA+ Module import

VARTABLES A, B

Q:anmove (A,B,J:l) 2 A Len(z) > 0
LEp-N ~ID (TLA.sandbox.null)

L= ~ID (TLA.sandbox.null

Fig. 6. Completion menu with referenced identifiers

freely with their keyboard but MPS will point to syntax
errors since writing with the keyboard does not instantiate
new Concepts. To solve this issue, predefined strings were
mapped to the Concepts as aliases (via MPS Aliases and
the Transformation Menu Language which allows to trigger
actions when given patterns are identified). Not only do aliases
appear in completion menus and context assistants but MPS
also instantiates the corresponding Concepts in the current
model the user is editing when the alias or a part of it (if
no other possible match) is typed in.

Another editing issue is hiding optional model elements,
when they are not needed. For instance, in TLA+, a module
can optionally extend other modules. In Figure 2 the optional
block is shown as a set of cells preceded by a question mark.
In the case of a standalone TLA+ module, the EXTENDS”
clause should be hidden. However, if it is hidden, there is no
mechanism defined to allow users to make it appear and thus to
import modules. In MPS this user intention is captured through
”display conditions” and side tranform actions”, which allow
to implement specific mechanisms in the editor.

Figure 5 illustrates this principle. A Transformation Menu
can be invoked by a user typing “EXTENDS” right to the cell
to which it has been associated. It leads to the instantiation
of a new element in the list of extended module names. The
condition in the “show if” property is then verified, and the
hidden field is unhidden.

2) Reference Resolution: Syntax predictions are an asset to
be used in parallel with free editing. Predictions are not only
meant to suggest AST nodes to instantiate but also strings
to fill in editable fields. Reference resolution is one of the
functionalities meant to enhance the predictions provided by
the IDE.

In MPS, a reference creates a link between two nodes of
the AST outside the tree containment hierarchy. For instance,
a “VariableDeclaration” node is contained in a "Module”, but
can be referred to, using a “VariableReference” node, from
any following definition. The principle is thus to use pointers

in Editors targeting the variable declaration identifier. The
main goal is to improve user experience by automatically
providing (in the context menu) the identifiers (or names)
defined in the specification scope. Figure 6 shows that when
editing the "CanMove” definition, the user is presented with
the previously defined variables A and B. Furthermore, con-
necting the concepts through references enables refactoring
transformations, such as renaming, which applies seamlessly
to all occurrences of the reference.

D. Plaintext support with ANTLR

This section discusses pasting and file-loading and saving
in SpecEdit; three simple actions which need special attention
in projectional editors.

1) Paste handler: When a user tries to paste an element
into the IDE, a background routine is in charge of retrieving
the clipboard content and inserting it in the code editor.
This happens transparently when working with text. In a
projectional editor, however, the text from the clipboard should
be first parsed and interpreted to instantiate the corresponding
nodes in the model.

SpecEdit uses the ANTLR parser-generator framework and
a TLA+ grammar definition to process plaintext. ANTLR
builds a parse tree and generates a skeleton visitor class
containing methods for traversing parse trees. In the case of
SpecEdit, the corresponding visitor class is subclassed and
each visit method overridden to instantiate MPS Concepts.
The TLA+ Concepts defined are programmatically accessible
within MPS. As opposed to regular transpiling, in the case of
SpecEdit, the input and output language are the same. Their
respective definitions are however different (ASCII grammar
versus MPS Language).

To integrate the modules generated with ANTLR into MPS
and consequently into SpecEdit, a Java archive containing the
compiled code and the various dependencies (like the parser,
lexer and visitor) was created and imported under a new
solution in MPS (as a stub model). Based on this process, we
created an MPS plugin inserting a new entry in the context
menu. Thanks to this plugin, when the user clicks on the
new entry in the menu, a method retrieving the content of the
clipboard is called and checks that the retrieved text verifies
a given pattern. The text retrieved from the clipboard, which
is tokenized, parsed, visited and mapped with MPS Concepts
allows the instantiation of an AST.

2) Custom persistence model: By default, models in MPS
are saved in a proprietary XML-based format. The idea we
had was to create a custom persistence model allowing to
remove any formatting specific to the IDE in order to save
TLA+ source code files directly in plaintext and ensure the
compatibility of SpecEdit with the existing TLA+ tools. This
implied modifying the reading (opening files) and writing
(saving files) procedures of the IDE.

The approach followed is very similar to the one used
for the realization of the paste handler. It involved using the
modules generated using ANTLR to ensure the transpiling. As
in the case of the paste handler, a new dedicated MPS plugin

build solution was created that imports a custom persistence
model. Classes were created to override the persistence logic,
encapsulate the parsing and visiting procedures and implement
the different interfaces that are essential for dealing with the
internal working mechanisms of MPS. [16]

Apart from the import source, which is a file and not the
clipboard, the processing principle for loading ASCII TLA+
files is exactly the same as for the paste handler (lexing,
parsing, visiting, mapping). Note however that we created an
explicit plugin descriptor for MPS to be aware that this plugin
provides a model factory. The writing procedure is delegated
to text generators implemented via MPS TextGens.

The two import approaches selected, namely pasting and
customizing the persistence model, were chosen because of
their respective merits. While importing unstructured models
in MPS (i.e. models written in plaintext) is essential from a
user’s point of view, being able to insert pieces of TLA+ code
from external editors into ongoing MPS projects is also useful.

Finally, the basic projectional editor, introduced in Section
III-B, once tuned-up, became SpecEdit, a TLA+ IDE which
solves the syntax duality problem of TLA+ without compro-
mising either the user experience or the compatibility with the
existing tools.

IV. SPECEDIT IN PRACTICE

SpecEdit benefits extensively from the architecture provided
by MPS. The resulting multiplatform standalone IDE provides:

« Basic features of an IDE (syntax highlighting, tree view,
autocompletion, predictions, syntax verification, refer-
ence resolution, free editing support, etc.);

« Mathematical notation support, freeing TLA+ users from
the ASCII syntax;

o Plain text support, based on ANTLR modules, MPS
TextGens and a custom persistence model, which preserve
the compatibility with other tools.

The GitHub repository of SpecEdit is available at github.com/
RiwanC/SpecEdit together with a demo video which illustrates
the features offered by the IDE as well as its usability.

A. Concrete example

Elasticsearch is a distributed search engine developed in
Java. Distributed coordination is a problem the creators of the
engine faced and that is known to be difficult to solve [17]. The
Elasticsearch designers relied on TLA+ for the specification
and the validation of their cluster coordination module. The
full TLA+ specification (ASCII syntax) can be found in the
Elastic GitHub repository [18]. Its rendering inside SpecEdit
is available in the GitHub repository of SpecEdit.

The meaning of this specification, discussed in [7], is out
of the scope of this article. However, for illustration purposes
we have selected one definition from this specification, which
is presented in Figure 7. For comparison, Figure 8 illustrates
the same definition in SpecEdit. Compared to the ASCII spec-
ification, note the use of the standard mathematical symbols
for: a) the definitions, which are introduced by the “equal
by definition” operator £ instead of the == (line 1 in the

CommittedValuesDescendantsFromInitialValue ==
\E v \in InitialVersions

/\ \E n \in Nodes v =

initialAcceptedVersion|[n]

/\ \E votes \in SUBSET(initialConfiguration) :
/\ IsQuorum(votes, initialConfiguration)

/\ \A n \in votes
\in messages
CommittedPublishRequest(m)

/A NAm
=>
Fig. 7.

CommittedValuesDescendantsFromInitialValu

1]

d v € InitialVersions

A 3 n € Nodes

initialAcceptedVersion[n] <= v

[prevT |-> @, prew |-> v, nextT |-> m.term, nextV |-> m.version] \in descendant

Ilustration of an excerpt from a TLA+ Elasticsearch algorithm rendering in the editor of the TLA+ Toolbox

: v=1initialAcceptedVersion|[n]

A J votes € SUBSET (initialConfiguration):

A

A ¥V n € votes

A ¥V m € messages

IsQuorum(votes,initialConfiguration)

: initialAcceptedVersion[n]< v

CommittedPublishRegquest (m)

= [p‘_’ev':’ g , prevv - v,

nextT » m.

term, nextV = m . version] € descendant

Fig. 8. Illustration of an excerpt from a TLA+ Elasticsearch algorithm rendering in SpecEdit

example); b) the standard logic operators, A instead of /\ or
\land for conjunction (for readability, TLA+ provides a unary
conjunction operator, to be used in long conjunction chains,
line 3 in the example), = instead of => for implication (last
line in our example); ¢) comparison operators, < instead of
<= for less-or-equal (note the ambiguity with the right-to-left
logical implication in the ASCII version); d) the existential
and universal quantifiers, 3 and V instead of \E and \A
respectively; e) the set inclusion operator, € instead of \in
(present in most lines); f) the mapping operator for tuples, —
instead of |— > (last line in Figure 8). Not having to deviate
from mathematical writing (in both writing and reading) is
what streamlines the engineering process and reduces the
mental effort. Without providing a full textual description of
this definition, note that the first line in SpecEdit reads like
standard mathematical formulas: “Exists v in InitialVersions
such that ...”. The colon operator ”:” reads as “’such that” in
TLA+. In this case, similarly to the TLA+ export to ETEX,
we decided to preserve it, although using another symbol can
easily be achieved within SpecEdit.

SpecEdit provides bidirectional compatibility with the ex-
isting TLA+ tools. Since SpecEdit provides an ASCII export
option, users can edit the specifications in SpecEdit before
importing them in the TLA+ Toolbox [11] for further ma-
nipulation, like model-checking with TLC [4]. Moreover, the
ASCII support provided by the ANTLR modules enables
importing existing specifications in SpecEdit.

Through projectional editing, SpecEdit will guide the user
into writing syntactically correct specifications. Since the
user input is projected directly on the abstract syntax, it is
impossible to have syntax errors. SpecEdit is meant to dele-

N [OperatorDefinition]
5 Concept; OperatorDefinition
. properties
¥ references
N Expr: QuantifierBoundAndExpr
5 Concept QuantifierBoundAndExpr
| properties
7 references
N Expr:/\
N QBList: QuantifierBound
5 Concept: QuantifierBound
. properties
7 references
N Expr: Generalldentifier
5 (Concept: Generalldentifier
. properties
P 1D = InitialVersions
7 references
HoIDs:v
N LHS : NonFixLHS
5 (Concept: NonFixLHS
. properties
P ID = CommittedValuesDescendantsFrominitialValue

Fig. 9. Tree view of an excerpt from a TLA+ Elasticsearch algorithm in
SpecEdit

gate the semantic verification to the existing TLA+ backend,
named SANY, which performs all necessary verifications. The
virtue of this approach is that, regardless of the editor, all
specifications are validated by a unique semantic verification
engine, prohibiting semantic divergence between the editors
and the analytic tools.

SpecEdit is open and extensible, the state-of-the-art MPS
infrastructure is mature and maintained, supporting many
extensions from language generators to Application Program-
ming Interfaces (APIs) which would allow to expose novel
functionalities to the user. Consider, for instance the tree-like
representation of an excerpt from the Elasticsearch specifica-
tion, in Figure 9. This view, produced by MPS, closely follows
the internal syntactic representation of the specification. Like
most of the SpecEdit features inherited from MPS, this view
can be customized to create a specification explorer, which
would hierarchically show the content of specifications.

B. Lessons Learned

The integration of plaintext support in SpecEdit ensures
that the benefits of projectional editing are maximized while
guaranteeing the compatibility with legacy tools. The major
advantages of the projectional approach and MPS are to be
able to dissociate the model from the view and to have a high
composability of the language definition modules.

Merging the projectional approach with parsing nevertheless
bears its limits. The concern is that each time the underlying
structure of the language is modified both the projectional
editor and the ANTLR modules are impacted. TLA+ however,
is a mature language with a stable syntax, thus, the underlying
abstract syntax is considered stable. Since the ANTLR gram-
mar maps the parse-tree to the TLA+ Concepts, the Editors can
be modified without creating conflicts with ANTLR modules.

The projectional approach is not the most widespread ap-
proach in code editors nowadays. It however has the potential
to play an important role in the future to map DSL definition to
any syntax. This approach efficiently solves the difficulties of
translating requirements into formal specifications. In the case
of SpecEdit, the use of MPS as a backbone for the creation of
a tool dedicated to TLA+ has proved particularly fruitful. Not
only does MPS offer a complete customizable architecture, but
also provides access to non-trivial mechanisms for advanced
users. SpecEdit transcends the current duality of the syntax
of TLA+ and promises improvements that will facilitate the
daily work of systems engineers to bridge the gap between
conceptual view and syntax. The transition from one tool
to another is not an easy matter in daily professional life.
The projectional editor, though self-sufficient, combined with
a traditional parsing approach, addresses this concern in the
specific context of TLA+ by providing a bridge between
SpecEdit and the existing TLA+ tools.

V. CONCLUSION AND PERSPECTIVES

SpecEdit provides a solution that unifies the two existing
syntaxes of TLA+ and eases the work of engineers. To do so,
not only was it necessary to formalize a new model of the
language but also was it crucial to work on the input modes
provided to the users. Not yet a full-fledged IDE, SpecEdit
nonetheless is a viable TLA+ specification editor, as illustrated
on the Elasticsearch case-study. It is meant to epitomize what
can be achieved through projectional technology for improv-

ing the experience of systems engineers using specification
languages such as, but not limited to, TLA+.

Some future research directions include the use of model-
federations [19] to ensure the traceability of textual require-
ments translated into TLA+ specifications via SpecEdit. We
are also considering implementing various projections for
TLA+ specifications, based on tabular/graphical Editors.

REFERENCES

[1] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff, “How amazon web services uses formal methods,”
Communications of the ACM, vol. 58, no. 4, pp. 66-73, 2015.

[2] J.-M. Bruel, S. Ebersold, F. Galinier, A. Naumchev, M. Mazzara,
and B. Meyer, “The role of formalism in system requirements (full
version),” 2019. [Online]. Available: https://arxiv.org/abs/1911.02564v6

[3] L. Lamport, “The temporal logic of actions,” ACM Trans. Program.
Lang. Syst., vol. 16, no. 3, p. 872-923, May 1994.

[4] Y. Yu, P. Manolios, and L. Lamport, “Model Checking TLA+ Specifica-
tions,” in Correct Hardware Design and Verification Methods, L. Pierre
and T. Kropf, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1999, pp. 54-66.

[5] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz, “A TLA+
Proof System,” in Knowledge Exchange: Automated Provers and
Proof Assistants (KEAPPA), Doha, Qatar, 2008. [Online]. Available:
https://hal.inria.fr/inria-00338299

[6] D. Langworthy, “TLA+ at Microsoft: 16 Years in Production,” in TLA+
Conference (keynote), St. Louis, MO, USA, 2019.

[7]1 Y. Welsch, “Using TLA+ for fun and profit in the development of
Elasticsearch,” in TLA+ Conference (keynote), St. Louis, MO, USA,
2019.

[8] T. R. G. Green, “Cognitive dimensions of notations,” in Proceedings of
the Fifth Conference of the British Computer Society, Human-Computer
Interaction Specialist Group on People and Computers V. USA:
Cambridge University Press, 1990, p. 443—460.

[9]1 Google Groups. (2020) Some user feedback. [Online]. Available: https:

//groups.google.com/forum/#!msg/tlaplus/WdDT5sKY7rl/t_jswui_GkcJ

L. Lamport, Specifying Systems: The TLA+ Language and Tools for

Hardware and Software Engineers. USA: Addison-Wesley Longman

Publishing Co., Inc., 2002.

M. A. Kuppe, L. Lamport, and D. Ricketts, “The TLA+ Toolbox,”

Electronic Proceedings in Theoretical Computer Science, vol. 310, p.

50-62, Dec 2019.

S. Erdweg, T. van der Storm, M. Voélter, M. Boersma, R. Bosman, W. R.

Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. D. P. Konat, P. J.

Molina, M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi,

V. A. Vergu, E. Visser, K. van der Vlist, G. H. Wachsmuth, and J. van der

Woning, “The state of the art in language workbenches,” in Software

Language Engineering, M. Erwig, R. F. Paige, and E. Van Wyk, Eds.

Cham: Springer International Publishing, 2013, pp. 197-217.

T. Parr, The Definitive ANTLR 4 Reference, 2nd ed.

Bookshelf, 2013.

C. Simonyi, “The death of computer languages, the birth of intentional

programming,” Tech. Rep. MSR-TR-95-52, September 1995. [Online].

Available: https://www.microsoft.com/en-us/research/publication/

the-death- of-computer-languages-the- birth-of- intentional- programming/

M. Voelter and V. Pech, “Language modularity with the mps language

workbench,” in 2012 34th International Conference on Software Engi-

neering (ICSE), 2012, pp. 1449-1450.

[16] JetBrains. (2020) Custom persistence cookbook. [Online]. Available:

https://www.jetbrains.com/help/mps/custom-persistence-cookbook.html

S. Ossowski and R. Menezes, “On coordination and its significance to

distributed and multi-agent systems,” Concurrency and Computation:

Practice and Experience, vol. 18, no. 4, pp. 359-370, 2006.

Y. Welsch and D. Turner. (2019) Zenwithterms.tla. [Online].

Available: https://github.com/elastic/elasticsearch-formal-models/blob/

master/ZenWithTerms/tla/ZenWithTerms.tla

F. R. Golra, F. Dagnat, J. Souquiéres, I. Sayar, and S. Guerin, “Bridging

the gap between informal requirements and formal specifications using

model federation,” in Software Engineering and Formal Methods, E. B.

Johnsen and I. Schaefer, Eds. Cham: Springer International Publishing,

2018, pp. 54-69.

[10]

[11]

[12]

[13] Pragmatic

[14]

[15]

(17]

(18]

[19]

