
SpecEdit
An IDE for TLA+

1/18

31/08/2020
Riwan Cuinat
Ciprian Teodorov
Joël Champeau

1. Riwan Cuinat, Ciprian Teodorov and Joël Champeau.
SpecEdit: Projectional Editing for TLA+ Specifications

Overview

2/18

Introduction

Objectives and choices

Architecture

Creation of a projectional editor

Plaintext support

Customization of user experience

SpecEdit in practice

Conclusion and perspectives

Introduction

❑ Integrated Development
Environment (IDE)

❑TLA+ specification language

❑TLA+ Toolbox

❑ Syntax duality

Is it possible to hide TLA+'s syntax
duality in a viable bilingual Integrated
Development Environment (IDE) to
reduce the mental efforts of system
engineers?

3/18

One of the good things about TLA+ is that if […][you don’t]
understand what a TLA+ construct means, […][you] can look
it up in a math book. Math books don’t write math in ASCII,
they use standard mathematical symbols.

\subseteq ⊆

Objectives and choices

❑ SpecEdit, an IDE:
❑ Exposing only the mathematical syntax to the user,

❑Translating it to the ASCII version for backward
compatibility.

❑Technology: JetBrains MetaProgramming System (MPS)

❑Advantages:
❑ Projectional editing

❑Mathematical notation support

❑Adequate input mechanisms

4/18

Architecture

5/18

I - Creation of a
projectional editor

6/18

MPS Concepts

 No grammar

 MPS Structure Language (Abstract Syntax)

 Need to convert the grammar into MPS Concepts

 Result: Metamodel with 110 interconnected Concepts

7/18

MPS Editors

8/18

❑ View and Controller (in MPS model-view-
controller pattern)

❑Cells (which contain other cells or text)

❑ Style (indentation, color, etc.)

II - Plaintext
support

9/18

Custom paste handler

❑ In charge of managing paste events

❑ Integration of ANTLR modules in MPS

❑ Lexing, parsing, visiting

❑Overriding of the methods of the visitor

❑Transpiling (ASCII TLA+/MPS Language TLA+)

❑ Plugin inserting an entry in the context menu

10/18

Custom persistence
model (+TextGens)

❑Models are saved in an XML-based format

❑ Similar approach (different source)

❑ Rewriting loading/saving strategy

❑ Plugin (set as a ModelFactoryProvider)

11/18

III - Customization of
user experience (UX)

12/18

Free editing
support

 Prohibited by default (Context menu for completion)

 “Editable” property: Not enough (syntactic error)

 Node instantiation triggered for given string via
transformation menus and aliases

13/18

Optional field
management

 Side transformations (available when users type from
the left or right part of a cell)

 Combination with hidden fields

 Definition of actions to be executed on a given written
string to unhide fields

14/18

IV - SpecEdit in practice

15/18

Concrete
example

16/18

 Elasticsearch

 Comparison of the rendering between TLA+ Toolbox and SpecEdit

Conclusion and perspectives

 Projectional approach

 Merging of the existing syntaxes

 Need to formalize a new language model

 Not yet a full-fledged IDE

 Meant at epitomizing what can be achieved through projectional editing

 Further research directions: Model federation and tabular/graphical projections

17/18

18/18

Project repository: github.com/RiwanC/SpecEdit
Demo video: youtu.be/8JGlZt_DNt8

