A Model Checkable UML Soccer Player

Valentin Besnard
ERIS, ESEO-TECH
Angers, France
valentin.besnard @eseo.fr

Matthias Brun
ERIS, ESEO-TECH
Angers, France
matthias.brun @eseo.fr

Abstract—This paper presents a UML implementation of
the MDETools’19 challenge problem with EMI (our Embed-
ded/Experimental Model Interpreter). EMI is a model interpreter
that can be used to execute, simulate, and formally verify UML
models on host or embedded targets. The tool’s main specificity
relies on a single implementation of the language semantics such
that consistency is ensured between all development phases:
from design to verification and execution activities. Using this
approach, we have succeeded in (i) designing a UML model for
the challenge problem, (ii) applying formal verification using
model-checking on the design model, and (iii) executing this
model in order to participate in the challenge.

Index Terms—UML, Model-Driven Engineering, Tool

I. INTRODUCTION

In this paper, we present a solution to the MDETools’19
challenge problem [Worl9]] based on EMI, our UML model
interpreter. This challenge provides an interesting case study to
show the usability of Model-Driven Engineering (MDE) tools
and to facilitate comparison and evaluation of such tools. This
year, the challenge is a RoboCup-type game where two robots
are competing in a soccer game. The goal of the challenge is
to design a software application to control one of the robot
for scoring the maximum number of goals during a match.
The match is officiated by a referee that notifies robots with
some information (e.g., end of game, penalty when a soccer
player keeps the ball for too much time). A soccer simulator
made with Unity gives a graphical view of the soccer game.
Two TCP connections (one for the player and the other one
for the referee) can be used to connect the designed software
application to the soccer simulator and control the robot.

Designing such a software program requires to verify its
behavior. With the increasing complexity of systems, software
programs are more often exposed to uncertain behaviors,
security flaws, as well as design mistakes that could lead to
potential critical failures. To verify and validate such software
applications, MDE provides capabilities to analyze models of
these programs, especially with formal verification techniques
(e.g., model-checking), during early design phases.

To this end, our solution (Github repository: fhttps://github.
com/ValentinBesnard/mdetools19-emi) for the MDETools’19
challenge problem is a UML [OMGI17b] model that can be
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verified and executed with EMI (our Embedded/Experimental
Model Interpreter). EMI is an interpreter of UML models that
relies on a single implementation of the language semantics for
all activities: simulation, verification, and execution. This tool
provides a communication interface such that analysis tools
can control the model execution and reuse the operational
semantics of our model interpreter for the verification step.
As a result, the same combination of model and interpreter is
used for model verification and execution on actual systems.
This gives more confidence in the fact that what is verified is
what is executed in comparison to other techniques that rely
on unproved generation steps (e.g., code generation, model
transformation). The main specificities of our approach as well
as the software architecture of this tool have been presented
in [BBJ™18b], [BTJ"19], [BBJ™18a], [BBD " 17]]. The novelty
of this paper is to show usability of this prototype on a case
study of the MDE community.

Using this tool, we provide a solution to the MDETools’ 19
challenge problem using the following process. First, we
design a UML model of the system to (i) handle displace-
ments of the robot, and (ii) control suction for aspiring and
shooting the ball. Then, we design an abstracted model of
the system environment, which has been connected to the
system model for verification purposes. The OBP2 model-
checker [TLRDD16|, [TDLR17|] (https://plug-obp.github.10/)
has been connected to EMI for applying simulation and model-
checking. We have also deployed one observer automaton on
the actual system to monitor a safety property at runtime.
We finally connected the UML model to the soccer simulator
using real TCP connections. The robot has been successfully
controlled. In average, it scores 10 goals per match without
opponent.

The remainder of this paper is structured as follows.
makes a brief presentation of EML presents
the design of our UML model before we explain how it has
been analyzed in[Section IV] Then, we execute this model with
the actual soccer simulator in [Section V| In [Section VIl we
discuss limitations and strengths of EMI, and in [Section VII
we review some related work. Finally, we conclude this paper

in [Section VIIIl
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II. BRIEF PRESENTATION OF EMI

EMI (https://plug-obp.github.io/bare-metal-uml/) is a tool
dedicated to the verification and execution of UML models.
This section makes a reminder of its specificities presented in
(BBJT18b], [BTJT19).

The main characteristic of this model interpreter is to rely
on a single implementation of the language semantics for all
activities: simulation, verification, and execution. This unique
definition of the language semantics is encoded into our model
interpreter as its operational semantics. A communication in-
terface is also provided to connect analysis tools to this model
interpreter. This interface enables to control model execution
through the interpreter and to reuse the same implementation
of the language semantics. As a result, the same couple (model
+ operational semantics) is used for model verification and
actual execution.

In comparison to classical approaches, this technique avoids
semantic gaps caused by code generation or model transfor-
mations from the design model. Our technique also avoids to
build, prove, and maintain an equivalence relation between the
executable code and the model used for formal verification. In
our approach, the same model and the same definition of the
language semantics are used for verification and execution.
This offers two main benefits: (1) it ensures that what is veri-
fied is what is executed, and (2) it facilitates the understanding
of analysis results that are directly expressed in terms of design
concepts.

Using EMI, we can apply multiple verification and valida-
tion (V&V) activities directly on the design model. The OBP2
model-checker can be used to perform trace-based simulation
and LTL model-checking [BBJ™18b]. It is also possible to
encode safety properties into UML observer automata and to
deploy these observer automata on the actual target to make
runtime monitoring [BTJT19]. The same observer automata
can also be used in model-checking during early verification
phases. If model-checking checks the design model exhaus-
tively, it requires an abstracted model of the system environ-
ment to perform the verification. Therefore, monitoring offers
a good complementarity to model-checking in case of bad
environment abstractions or state-space explosion.

This model interpreter is particularly relevant for executing
UML models of embedded systems. For this purpose, it can be
deployed on bare-metal (i.e., without OS) on embedded targets
(e.g., STM32 discovery) or on host computers running a Linux
Operating System (OS). Only the latter platform has been used
in the context of this case study. The interested reader should
refer to [BBJ ™ 18b] for more details about model deployment.

III. DESIGN OF THE UML MODEL

To address the MDETools challenge, the first step has been
to design a UML model of the system. This section describes
the main design principles used for this purpose.

A. Modular UML Model

For executing and verifying this software application, we
made a modular UML model such that different environment

Main

system : System environment : Environment

| controller : Controller

| tm : TrajectoryManager

Figure 1: General composite structure diagram of the UML
model.
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Figure 2: State machine of the Controller.

models can be connected to the system at different times. This
concept is shown on the composite structure diagram of our
model in The Main composite structure is composed
of the system and of an environment. Both components are
linked together through ports and communicate by sending
signals. This modular UML model is divided in several files:
one that defines signals and common interfaces, one for the
system, one for each environment, and one for the Main
composite structure that instantiate both the sysfem and an
environment. For this model, we design two environment
models: an abstracted environment model and a concrete
environment model. The abstracted environment model is an
abstraction of the actual environment to perform trace-based
simulation and formal verification. The concrete environment
implements the two TCP connections to the soccer simulator:
one for the player and the other one for the referee.

This UML model conforms to the UML subset supported by
EMI, which can be represented by class, composite structure,
and state machines diagrams. In this subset, states machines
transitions can have a trigger (i.e., a received event that triggers
the transition), a guard (i.e., a predicate), and an effect. All
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WaitConnection

refereeConnected /
SET(this, refereeConnected, TRUE);

playerConnected /
SET(this, playerConnected, TRUE);

[GET(this, refereeConnected) &&
GET(this, playerConnected)]
4
Idle [GET(this, trajectory) == 1
&& GET(this, aArrived)]/
SEND(GET(this, controller), finish);

[GET(this, xArrived)
&& GET(this, zArrived)] /
SEND(GET(this, controller),
finish);

entry /

SET(this, needTurn, FALSE); |¢
SET(this, ballinRobot, FALSE); |_
SET(this, xArrived, 0);
SET(this, zArrived, 0);
SET(this, aArrived, 0);

goPos /

SET(this, trajectory, 0);
SET(this, ballTarget, params->ball);
ET(this, xTarget, params->x);
ET(this, zTarget, params->z);

goAngle /

SET(this, trajectory, 1);
SET(this, ballTarget, params->ball);
SET(this, xTarget, params->Xx);
SET(this, zTarget, params->z);

[else] lelse]

o
>

[GET(this, trajectory) ==
&& GET(this, aArrived)] /
SET(this, needTurn, FALSE);

/ SEND(GET(this, comPlayer),
getPlayerGPS);
SEND(GET(this, comPlayer),
getBallGPS);
SEND(GET(this, comPlayer),
getCompass);
SEND(GET(this, comReferee),
checkReferee);
SET(this, receivedPlayer, FALSE);
SET(this, receivedBall, FALSE);
SET(this, receivedCompass, FALSE);

SET(this, ack, FALSE); A 2
E’Wignals |
rspBallGPS / rspPlayerGPS /

SET(this, xBall, params->x); ||SET(this, xPlayer, params->x);
SET(this, zBall, params->z); || SET(this, zPlayer, params->2z);
SET(this, receivedBall, 1); SET(this, receivedPlayer, 1);

rspCompass /

possesion / SET(this, aPlayer, params->direction);
SET(this, balllnRobot, TRUE); SET(this, receivedCompass, 1);
abort / refereeAck /

SET(this, error, TRUE); SET(this, ack, TRUE);

[else] [GET(this, ack) && GET(this, error)
&& GET(this, receivedBall)

&& GET(this, receivedPlayer)
&& GET(this, receivedCompass)] /
SEND(GET(this, controller), error);

SET(this, error, FALSE);

[GET(this, ack) && !GET(this, error)
&& GET(this, receivedBall)
&& GET(this, receivedPlayer)
&& GET(this, receivedCompass)]

<

Y

[GET(this, trajectory) == 0
&& GET(this, needTurn) == 0]/ T

P-controller that: P-controller that:
d

[else]l/ ...

- send moveForward and moveRight signals A
- send spin signals

- set needTurn to 1 if needed & ey 1 e A
- set xArrived and zArrived to 1 when finished - setaArrived to 1 when finishe

Figure 3: State machine of the TrajectoryManager.

transitions without triggers rely on completion events for being
fired. To define the fine-grained behavior, we use an action
language to describe transitions guards and effects. In our tool,
the action language is based on the C programming language
with additional C macros to access UML objects. These
expressions are valid C statements that can be executed as they
stand by our model interpreter. A more detailed presentation
of our action language is given in [BBJT18b]. Hence, this
UML subset enables to describe both the structural and the
behavioral parts of UML components.

B. System Design

The system component is composed of two objects: a
controller that describes the high-level strategy of the soccer

player, and a trajectory manager (tm) that can control the robot
according to different kinds of trajectories.

The controller behavior is depicted on the state machine in
Once the connection is established with the soccer
simulator, the controller tries to perform the following list of
actions in loop during all the match duration:

1) Move towards the ball and aspire it when the robot is
close to it.

2) Move to the shooting position (x=-20, z=0) located in
front of the opponent’s goal

3) Turn towards the opponent’s goal

4) Shoot the ball

5) Restart to 1).

For all trajectories, the controller goes to the next step each
time the trajectory manager sends the finish signal. In case
of failure, the trajectory manager sends an error signal to
indicate that some messages sent by the referee must be taken
into account. In case of timeout (i.e., the player keeps the
ball during too much time) or if the opponent has scored, the
controller restarts the sequence by moving to the ball position.
If the match is finished, the done signal is consumed and the
state machine goes to the End state.

The state machine of the trajectory manager (tm) is illus-
trated in Multiple kinds of trajectories are provided:

o Turn towards the ball

o Turn towards the direction given by a point at (x, z)
coordinates

« Go to a position specified with (x, z) coordinates

« Go to the ball position and aspire it.

When the trajectory asked by the controller is finished, a finish
signal is sent to it.

The first three trajectories finish when the target direction or
position has been reached. The last trajectory, used to take the
ball, is a bit more complex. This trajectory is a combination
of both trajectories 1 and 3 to move simultaneously the robot
to the ball position and to orient it towards the ball. When the
robot is close to the ball, the suction is activated to aspire the
ball while the robot continues its movement. The trajectory is
considered complete when the ball has been taken (i.e., the
possession signal has been received).

To control the robot, the state machine of the trajectory
manager begins by sending requests to the environment to
get new values of sensors (e.g., GPS and compass). A signal
checkReferee is also sent to the referee to know if some
interesting events (e.g., timeout, done) have occurred. When
all information have been received, the trajectory manager
checks which trajectory has to be made for computing new
commands to apply on motors. This step is repeated until the
trajectory finishes or an abort signal is received. In the latter
case, the trajectory is interrupted and an error signal is sent
to the controller.

To control movements of the robot, the trajectory manager
used P-controllers. The control algorithm is divided in two
parts: one for displacements of the robot using x and z
coordinates, and the other one for the orientation of the robot.



For displacements, we used one P-controller for moving the
robot forward or backward (with the moveForward signal),
and another one for moving the robot left or right (with the
moveRight signal). For the orientation, only one P-controller
is used to make rotate the robot (with the spin signal). For
all these controllers, we use only a proportional component
(P) because the robot behavior is almost perfect and it also
simplifies the verification task.

IV. ANALYSIS ACTIVITIES

To verify the behavior of this UML model, we design an
abstracted environment that can be connected to the system.
Using this setup, we have applied multiple analysis activities
to increase the confidence in our model.

A. Design of an Abstracted Environment Model

To analyze our UML design model, we need an abstraction
of the environment to close the system for the verification step.
For this purpose, we have designed an abstracted environment

Main

system : System environment : Environment

| controller : Controller player : Player |

| tm : TrajectoryManager referee : Referee |

Figure 4: Composite structure diagram with the abstracted
environment.

Idle

SET(this, connected, TRUE);
SEND(GET(this, tm),
v playerConnected);

getPlayerGPS /
moveForward SEND(GET(this, tm),
> < rspPlayerGPS, -20, 0);
) getPlayerGPS /
moveRight SEND(GET(this, tm),
> <€— rspPlayerGPS, 10, 20);
Connected
getCompass /
spin SEND(GET(this, tm),
> < rspCompass, 90);
getCompass /
stop SEND(GET(this, tm),
> <€ rspCompass, 180);
. A A A getBallGPS /
setSuction SEND(GET(this, tm),

getSuction / rspBallGPS, 0, 0);
SEND(GET(this, tm),

rspSuction, 0);

Figure 5: State machine of the abstracted Player.

SET(this, connected, TRUE);
SEND(GET(this, tm), refereeConnected);

checkReferee /
SEND(GET(this, tm), abort);
SEND(GET(this, controller), timeout);
< SEND(GET(this, tm), refereeAck);

checkReferee /
SEND(GET(this, tm), abort);

SEND(GET(this, controller), opponentScored);
SEND(GET(this, tm), refereeAck);

checkReferee /
SEND(GET(this, tm), abort);
SEND(GET(this, controller), done);
SEND(GET(this, tm), refereeAck);

Connected

checkReferee /

SEND(GET(this, tm), possesion);

< SEND(GET(this, tm), refereeAck);
checkReferee /

P SEND(GET(this, tm), refereeAck);

Figure 6: State machine of the abstracted Referee.

composed of a player and a referee. The Main compos-
ite structure with this environment model is represented in
The environment model used for model-checking
usually needs to make some abstractions to avoid state-
space explosion. These abstractions can be used to refine the
model and reduce the number of possible scenarios. For this
abstracted environment model, our goal is to focus verification
efforts on control flows. As a result, we will not verify the
correctness of P-controllers (which are not at the heart of the
challenge problem).

The player state machine for this abstracted environment
is given in This state machine considers that the
connection is always successful before reaching a Connected
state. This state considers all events interleaving such that any
received event can be consumed at any time. To render our
environment more robust, we also consider that there is no
links between sensors and actuators to consider a superset
of all possible cases. For instance, no link is made between
commands (e.g., moveForward) sent to the robot and its GPS
position. Because our goal is not to verify control algorithms,
signals sent to the system can take random parameters for
position and orientation of the robot. The only important point
is to detect that the robot is arrived on its shooting position and
in the right shooting direction. For this purpose, we consider
two cases for handling getPlayerGPS and getCompass signals:
one case with the shooting position or direction, and one case
with random values (different from the previous ones).

For the referee state machine in we use the same
principle to consider all events interleaving. Here, only one
kind of events can be received (checkReferee) but different
responses are possible (e.g., timeout, done). All these possibili-
ties have been taken into account in our model. In all cases, the
refereeAck signal is sent to the system for acknowledgement.

Using this setup, we have a generic environment model in
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Figure 7: Simulation interface of the OBP2 tool.

terms of control flow as well as an abstracted representation
of directions and GPS positions.

B. Analysis of the UML Model

With this abstracted environment model, we can now apply
multiple V&V activities on our UML soccer player model.
For this purpose, the UML model is loaded in EMI and the
OBP2 model-checker is connected to it such that it can control
and verify model execution. OBP2 is a explicit-state model-
checker (still under development) that provides a modular
infrastructure to verify models for various languages including
UML.

Simulation. We can simulate our model using trace-based
simulation facilities of OBP2 as shown in The sim-
ulator can be used to observe the current execution state and
explore different execution traces. This is especially useful in
early design phases to detect obvious errors or inconsistencies
in the model.

Model-checking. OBP2 can also be used to verify formal
properties through model-checking. For these experiments, we
used an implementation of the "nested DFS" Biichi empti-
ness checking algorithm proposed by Gaiser and Schwoon
in [GSQ9]. On this UML model, we have expressed eight
properties about the system behavior. Each property has been
specified in natural language and in LTL.

1) The player finally goes to the shooting position or aborts

its action after having taken the ball.
"[] ((playerHasBall && goToBall) —->
<> (goToGoal || listenReferee))"

2) The player is never in the wrong direction when he

shoots.
"[] !(inShootPos &&

3) If a timeout occurs, the player will finally move towards

the ball after having listen to the referee.
"[] (timeout ->
<> (listenReferee -> <> goToBall))"
4) If the opponent scores, the player will finally move
towards the ball after having listen to the referee.
"[] (opponentScored —->
<> (listenReferee -> <> goToBall))"

5) The controller finally ends after having received the done
signal.

!'goalDirection)"

Running

[inShootPos && !goalDirection]

Y
Fail

Figure 8: State machine of the UML Observer Automaton for
property 2.

"[]

6) If the player is not in the WaitConnection state, both the
player and the referee are connected.

"[] (notInWaitConnection —->
(playerConnected && refereeConnected))"

7) If the player tries to take the ball, it will finally succeed
and send the finish signal to the controller, or it will
continue indefinitely.

"[1 ((ballTarget && !'tmIdle && trajPos) —>
<> ((finish && playerHasBall) || !finish))"

8) If the player moves to a target position, it will finally
reach this position and send the finish signal to the
controller, or it will continue indefinitely.

"[1 ((!ballTarget && !'tmIdle && trajPos) —->
<> ((finish && atTargetPos) || !finish))"

(done —=> <> end)"

These properties have been expressed in LTL by linking
atomic propositions (e.g., playerHasBall, goToBall)
with LTL operators: not (!), and (&&), or (| |), globally
([1), and eventually (<>). Atomic propositions are boolean
expressions that depends on objects of the model. These pred-
icates are expressed using our C action language (also used
to describe effects and guards of state machine transitions).
Atomic propositions will not be further details in this paper but
description of these predicates can be found on our repository.
All these LTL properties have been verified with OBP2 on the
model state-space composed of 16,844 configurations linked
together with 31,370 transitions. For comparison purposes, the
state-space exploration on a desktop computer (8 CPU cores
4 GHz, 16 GB RAM) running a Linux OS takes in average
4.3 seconds and 28 MB of memory.

Monitoring. Our model interpreter also provides the pos-
sibility to monitor safety properties at runtime using observer
automata. Among the eight formal properties verified through
model-checking, two of them are safety properties (properties
2 and 6). They can be encoded into observer automata de-
signed with UML state machines. These observer automata
can be deployed with EMI on the actual system to make
runtime monitoring. For this purpose, these observer automata
are synchronously composed with the system all along model
execution. If monitoring can not prove the absence of an error,
this activity is complementary to formal verification. Even if
model-checking performs an exhaustive verification, it may
miss some real execution cases due to incorrect environment



/ SET(this, connected,
UML_TcpConnectionOpen(...);

[GET(this, connected)]

moveForward /
UML_TcpConnectionWrite(...);

moveRight /
UML_TcpConnectionWrite(...);

setSuction /
UML_TcpConnectionWrite(...);

spin /
UML_TcpConnectionWrite(...);

stop /

Connected UML_TcpConnectionWrite(...);

<

getCompass /
UML_TcpConnectionWrite(...)

getSuction /
UML_TcpConnectionWrite(...)

getBallGPS /

getPlayerGPS / i X
UML_TcpConnectionWrite(...)

UML_TcpConnectionWrite(...)

A
{ReadPIayerGPS} { ReadBallGPS }

SET(this, status,
UML_TcpConnectionRead(...));
if(GET(this, status)) {
// Parsing omitted
SEND(GET(this, tm),
rspPlayerGPS, X, z);

}
A
EeadSuction

SET(this, status,
UML_TcpConnectionRead(...));
if(GET(this, status)) {
// Parsing omitted
SEND(GET(this, tm),
rspSuction, power);

SET(this, status,
UML_TcpConnectionRead(...));
if(GET(this, status)) {
// Parsing omitted
SEND(GET(this, tm),
rspBallGPS, x, z);

Y
ReadCompasa
SET(this, status,

UML_TcpConnectionRead(...));
if(GET(this, status)) {
// Parsing omitted
SEND(GET(this, tm),
rspCompass, direction);

}

Ny

[else] /
SET(this, connected, FALSE);
UML_TcpConnectionClose(...);

[GET(this, status)]

Figure 9: State machine of the concrete Player.

abstractions. Such failures can be detected at runtime through
monitoring.

As an example, the observer automaton corresponding to
property 2 is illustrated in The transition guard of
this automaton is expressed with the same atomic propositions
as the LTL property. If a failure is detected, the automaton
reaches the Fail state. In this case, the problem can be notify
to the user (e.g., by printing an error message in logs) or it
can trigger appropriate error recovery mechanisms.

Therefore, all these activities contribute to improve our
UML model and get more confidence in its behavior.

V. EXECUTION OF THE UML MODEL WITH EMI

To execute the UML model with the actual robot, we design
a concrete environment model to connect our UML model to
the soccer simulator.

A. Design of a Concrete Environment Model

With our modular UML model, we only need to replace
the environment component to connect our UML model to
the soccer simulator provided by the MDETools contest. For
this purpose, we design a concrete environment model that
aims at communicating with both the controlled player and

Y

/ SET(this, connected,
UML_TcpConnectionOpen(...);

[GET(this, connected)]

Connected
checkReferee / ...

Additional effects when processing checkReferee: AN
if done received
SEND(GET(this, tm), abort);
SEND(GET(this, controller), done);
if player2 possesion received
SEND(GET(this, tm), possesion);
if player2 timeout received
SEND(GET(this, tm), abort);
SEND(GET(this, controller), timeout);
if playerl scored received
SEND(GET(this, tm), abort);
SEND(GET(this, controller), opponentScored);

SEND(GET(this, tm), refereeAck); vy

[else] /
SET(this, connected, FALSE);
UML_TcpConnectionClose(...);

[GET(this, status)]

Figure 10: State machine of the concrete Referee.

the referee using TCP connections. The application layer used
is a text-based protocol described by the MDETools challenge.

Our concrete environment model is composed of two ob-
jects: a player and a referee. In this case study, environment
models have the same structure (Figure 4)), only state machines
are different. The player state machine is given in
The first step is to open the connection with the robot.
When the connection is made, the state machine reaches
the Connected state. In this state, we can send requests to
actuators (e.g., moveForward, moveRight) or to sensors (e.g.,
getPlayerGPS, getCompass). In the latter case, we need to wait
a response of the soccer simulator to be able to send a signal
to the system with the returned values. To communicate via
TCP, we use the Application Programming Interface (API) of
EMI that provides the following functions:

e UML_TcpConnectionOpen to open the connection

e UML_TcpConnectionWrite to write data

e UMIL_TcpConnectionRead to read data

e UML_TcpConnectionClose to close the connection.

For sake of simplicity, parameters of these functions and

parsing of TCP responses have been omitted in
The state machine of the referee is illustrated in

In the same way, the Connected state is reached when the
connection is established. Contrary to the player, the referee
port is used by the soccer simulator only to send notifications.
For this reason, this TCP connection is not blocking and
used only when needed. When the checkReferee signal is
received, we check if some data have been received. If so, the
received string is parsed and signals corresponding to useful
notifications are sent to the system. In all cases, the state ma-
chine sends the refereeAck signal for acknowledgement when



processing is finished. The parsing has also been omitted on
this state machine but a UML note explains which notifications
are taken into account.

B. Execution with the Soccer Simulator

Once the concrete environment model designed, the UML
model has been deployed with EMI on a host computer
running a Linux OS. The execution with the actual environ-
ment achieves connection to the soccer simulator. The model
successfully controls movements of the soccer player as well
as suction and shooting of the ball. The controlled player
scores in average 10 goals per match when the opponent stays
in its initial position. The monitor of property 2 has also been
embed with EMI at runtime. No failure has been detected on
all execution traces performed until now. This means that for
all shots achieved, the robot was oriented in the right direction.

VI. DISCUSSIONS

In this section, we discuss strengths and limitations of our
approach, as well as further possible improvements of our
model.

A. Strengths

Our approach provides several benefits for executing and
verifying UML models. The verification is directly applied
on the design model with the same implementation of the
language semantics as the one used for actual execution.
Therefore, the behavior of the model that has been analyzed
during the verification step is the same as the one used at
runtime. Even if our interpreter has a bug, if verification tools
ensure that system requirements are verified, runtime execution
will also satisfy these requirements.

Due to the fact that our approach is transformation-free,
analysis results are directly expressed in terms of design
concepts which facilitate their understanding by engineers.

Another advantage is that our approach can be used to apply
formal verification tools on models designed with semi-formal
languages like UML. Indeed, the operational semantics of our
model interpreter is used as the reference. For instance, regard-
ing semantic variation points, the interpreter implementation
make choices that are used for both verification and execution.

The concept of modular UML model provides facilities for
designing models. Only the environment component need to
be replaced to apply verification activities or to execute the
system in its actual environment.

Our approach is well-suited for designing UML models of
embedded systems with state machines. Our C action language
enriched with macros enables to access UML objects as well
as low-level peripherals through the EMI API (e.g., TCP
functions).

B. Limitations.

Our model interpreter has also drawbacks that limit its
usability. One limitation is that our model interpreter only
supports a subset of UML. For instance, EMI does not provide
execution support for hierarchical states that would have been

useful to better define state machines, or reference attributes,
which would have been helpful to store socket references
rather than ids. Currently, only integer and boolean attributes
are managed.

Another drawback is that our tool handles neither timing nor
real-time constraints. To verify such constraints, a symbolic
representation of time is needed to be able to apply model-
checking but this is currently not supported.

The design of EMI focuses on the ability to execute UML
models of embedded systems and the possibility to deploy
them on bare-metal [BBJT18b|. For this purpose, EMI does
not use threads, which are usually provided by the OS layer.
This can be seen as a drawback for this case study because
we are not able to listen TCP sockets all the time. Instead of
threads, EMI relies on cooperative scheduling such that each
object can execute a step each time the scheduler asks it. The
order on which steps are executed depends on the scheduling
policy.

In terms of model-checking, we only focus on verifying
the control flow but it would have been interesting to also
verify control algorithms. Some additional refinements may be
needed to take that into account. However, this is in general
a difficult task that requires the help of domain experts to
define appropriate abstractions. These abstractions should be
sufficiently generic to cover all possible cases and sufficiently
specific to avoid state-space explosion.

C. Experience Feedback

From our experience, the design of the first prototype of the
UML soccer player takes a couple of hours. This prototype
was a simple model, without the modular architecture, that
has been used just for design assessment. Then, we have
implemented a second version of the model with the modular
model architecture and the two environment models. During
the design process, we have also tried different kinds of
trajectories and different optimizations (e.g., shooting distance,
moving speed). Therefore, we spend approximately one week
to get the final version of the model presented in this paper.

Model simulation has been used quite early in the de-
velopment process to analyze the model behavior during
the design phase. This has been useful to identify obvious
design or programming mistakes in our model. To analyze the
model behavior in details, we have expressed different system
requirements and verify them via model-checking. It results
that several LTL properties were not verified at the beginning.
The analysis of counterexamples has been useful for improving
our model. Indeed, in some very intricate cases, we notice that
some event pools were full because some useless events have
not been consumed. Hence, interesting events that come after
could not be added to these event pools. As a result, some
deadlocks or bad behaviors occurred.

Therefore, the use of EMI for analyzing this model has been
beneficial to detect design faults and improve our UML soccer
player model.



D. Improvements of the Model.

Our model has been successfully verified and executed with
EMI but we consider here some improvements that can be
made. It would have been interesting to implement a pathfind
algorithm for computing trajectories that avoid the opponent
robot. This could prevent some potential blocking situations
and increase the number of goals. Another idea is to enhance
the high-level strategy of our model to take into account sev-
eral shooting positions and to reduce displacements. Finally,
due to the fact that EMI does not support timing constraints,
our model does not handle the ball possession rule. This rule
mentions that a player cannot keep possession of the ball
during too much time otherwise he will receive a penalty.

VII. RELATED WORK

Our model interpreter focuses on analyzing and executing
UML models but other tools provide such capabilities.

Previous editions of the MDETools challenge problem
show interesting solutions (e.g., [HM18]], [LA18]]) based on
various languages and technologies. Among them, ThingML
[HFMH16] is a textual modeling language based on a subset
of UML with a first-class action language. ThingML also
provides the possibility to integrate platform-specific code or
to use existing librairies and frameworks. ThingML models
can then be transformed into different programming languages
including C and Go. Another tool, called Umple, has been
used in the last MDETools challenge problem. Umple [0O] is a
textual modeling language based on a subset of UML concepts
as well as other pinciples like mixins, traits, aspects, mixsets,
and filters. It can also incorporate programming-language
code like Java or C++. An Umple model is transformed into
executable code using the Umple compiler.

More focused on UML, different kinds of tools can be used
to perform model execution. Rhapsody [GHPO2|] and Rational
Software Architect [LNHO6] are modeling tools that can be
used to design UML models. Model execution, simulation,
and debugging can be applied on resulting models using code
generation capabilities. Moka [RDCT18]] and Moliz [ML12]]
are two model interpreters of fUML [OMG17a] models. Such
tools can be integrated with Papyrus [LTET09] and provide
execution, simulation, debugging, and testing facilities. GUML
[CSMB12] and UniComp [Cicl8|] are two model compilers
that can be used to compile directly UML models into efficient
executable code. These compilers can perform optimizations
at model-level and enforce predictability of the resulting
executable code. More tools dedicated to the execution of
UML models can be found in the following literature review
[CMS18|]. This work defines a classification framework to
characterize research studies based on UML model execution.
Among its findings, this review notices that very few tools
support model-level debugging and the use of formal specifi-
cation languages. However, model simulation is supported by
more than half of the selected approaches, which suggests that
model execution is valuable during early design phases.

Other tools provide more capabilities to analyze model
execution. GEMOC Studio [BDV™16] is both a language and

a modeling framework that can be used to design domain-
specific languages and models conforming to these languages.
Models can be executed with execution engines [DDC™ 14,
[MLWK13|], [VLDCM15|] and analyzed with V&V tools (e.g.,
trace execution manager, omniscient debugger, graphical an-
imator). Mbeddr [VRSKI12|] is another interesting initiative
for designing embedded systems using a set of integrated
and extensible languages. The design model can be trans-
formed into a formal model for being verified with a model-
checker, and into C executable code for being executed on
actual systems. Mbeddr also provides other analysis facilities
including testing or debugging. More research studies have
been identified and evaluated in the systematic review about
model execution tracing in [HMZ™ 19]. Among the approaches
under evaluation, 36% were based on UML models. This
review shows that traces are used for different V&V activities
including debugging, testing, model-checking, and semantic
differencing.

In comparison to all these tools, our approach enables to
apply model-checking directly on the design model with the
same implementation of the language semantics than the one
used for model execution. As a result, our model interpreter
unifies verification and execution of UML models.

VIII. CONCLUSION

In this paper, we have proposed a solution to the
MDETools’19 challenge problem by verifying and executing
a UML model of a robot soccer player with EMIL.

This model has been designed as a modular UML model
such that different environment models can be connected to
the system for different purposes. For this work, we have
designed two environment models: an abstracted environment
model used to close the system for analysis activities, and a
concrete environment model that implements TCP connections
for connecting our model to the soccer simulator.

Our UML design model has been analyzed through several
V&V activities. For this purpose, the OBP2 model-checker
has been connected to EMI to control model execution and
reuse the operational semantics of our model interpreter.
Using this setup, we have performed trace-based simulation to
explore different execution traces and scenarios. We have also
expressed eight system requirements as LTL properties and
verified them with model-checking. Even if model-checking is
based on an exhaustive verification of the model state-space,
some real execution cases could have been missed due to
incorrect environment abstraction. To exploit the complemen-
tarity between monitoring and model-checking, we expressed
one safety property into a UML observer automaton. This
automaton has been deployed with the model interpreter to
perform runtime monitoring.

To execute our UML model with the actual soccer simulator,
we replace the environment component with a concrete model
that implements the two TCP connections (player and referee).
The deployment of this model show successful control of the
robot with reasonably good performances.



In this paper, we show that our tool provides some benefits
for model verification but its has also some limitations mainly
due to the limited UML subset supported. Indeed, our model
interpreter can only handle primitive attributes and time man-
agement is not supported. Therefore, the ball possession rule
could not be implemented.

We also believe that several improvements can be achieved
on our model to enhance its quality and its performances.
Among them, the implementation of a pathfind algorithm
could be useful to choose optimized trajectories and avoid
the opponent. The abstracted environment model may also
be improved to take in consideration control algorithms with
additional assumptions for refining this model.

To improve our model interpreter, we plan to support more
UML concepts to increase the UML coverage of our tool.
Further work also includes to evaluate the resource overhead
of our tool in comparison with other model execution engines.
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