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@ Increasing complexity and connectivity of embedded systems
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= Increasing difficulty to detect, understand, and fix software failures
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Context

Observations

@ Increasing complexity and connectivity of embedded systems

= Increasing exposure to potential software failures
= Increasing difficulty to detect, understand, and fix software failures

Need for V&V at all design stages

@ Testing or proving that a system satisfies its expected properties

o Possibly relying on environment abstractions
(inputs to consider and execution platform)

Need for runtime monitoring

o Detecting safety property violations at runtime (with the actual environment)

@ Making it possible to trigger safe system recovery procedures
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© Introduced a solution based on a model interpreter

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 4 /31




Introduction

Overview

Goal

Provide a technique to execute models on embedded targets with facilities to
perform model-checking and runtime monitoring on these models

Our previous work [Besnard et al., MODELS 2018]

@ lIdentified problems on classical model-checking approaches

© Introduced a solution based on a model interpreter

In this work

© Identify problems on classical monitoring approaches

@ Can we address these problems with the model interpreter approach?

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19“‘, 2019 4 /31



(1) Classical Approach with Model-checking

| Requirements Specification |

expression in a
formal language

system modeling in -
a design language Formal Properties
Design Model
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(1) Classical Approach with Model-checking (Problems)

| Requirements Specification |

expression in a
formal language

system modeling in O -
a design language Formal Properties
q Models
Design Model model for Analysis

code generation transformation

Equivalence
Problem

Environment

Execution Environment

Problems: Two semantic gaps and an equivalence problem
caused by transformations of the design model into different languages
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(2) Our Approach with Model-checking [gesnard et al., MODELS 201g]
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(2) Our Approach with Model-checking [gesnard et al., MODELS 2018]
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(2) Our Approach with Model-checking [gesnard et al., MODELS 201g]

| Requirements Specification |

expression in a
formal language

system modeling in -
a design language Formal Properties
Design Model

A
interprets

Interpreter Component

Execution Environment

A unique definition of the language semantics
for verification activities and model execution
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(3) Classical Approach with Monitoring

Requirements Specification

system modeling in
a design language

Design Model |(—
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(3) Classical Approach with Monitoring

| Requirements Specification

expression in a
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[ expression as
system modeling in .
a design language observer Formal Properties
automata
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code generation code generation
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Environment
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Introduction

(3) Classical Approach with Monitoring (Problems)

| Requirements Specification

expression as
observer
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code generation
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Environment
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© Semantic gap between monitors model and monitors code
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(4) Our Approach with Monitoring

| Requirements Specification

expression of

observer
system modeling in automata in
a design language same design
language

Design Model
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(4) Our Approach with Monitoring

Requirements Specification

system modeling in
a design language

expression of
observer
automata in
same design
language

expression in a
formal language

Formal Properties

- ——-OR-——-|

transformation
—

Design Model

interprets

Monitors Model

interprets

1/0

Interpreter Component

Execution Environment

The same component interprets both design and monitors models:

@ No semantic gap

@ Only one language to express system and monitors models
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Cruise Control Overview m

<< component >>

DeployedSystem

<< component >>

CruiseControlSystem

<< component >> << component >>
CruiseControlinterface ControlLoop
speed speed command [ > ]
throttlePedal cruiseSpeed cruiseSpeed
brakePedal on/off on/off
clutchPedal
buttons
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Cruise Control Overview m

<< component >>

DeployedSystem

<< component >>
ThrottlePedal PhysicalEnvironment commandCCS
command environment environment  speed
pedal commandThrottle

<< component >>

BrakePedal

<< component >> |

<< component >> PhysicalVehicle

<< component >>

pedal CruiseControlSystem

<< component >> << component >> << component >>
ClutchPedal CruiseControlinterface ControlLoop
pedal speed speed command [ P
throttlePedal cruiseSpeed cruiseSpeed
<< component >> brakePedal on/off on/off
Buttons clutchPedal
buttons buttons
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Cruise Control Overview zi\)

<< component >>

DeployedSystem

<< component >>

<< component >>
ThrottlePedal PhysicalEnvironment commandCCS
command environment environment  speed
pedal commandThrottle

<< component >>

BrakePedal

<< component >> PhysicalVehicle

<< component >>

pedal CruiseControlSystem

<< component >> << component >> << component >>
ClutchPedal CruiseControlinterface ControlLoop
pedal speed speed command [ P
throttlePedal cruiseSpeed cruiseSpeed
<< component >> brakePedal on/off on/off
Buttons clutchPedal
buttons buttons
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Cruise Control Interface Requirements zi\)

System requirements

@ After the detection of an event that turns the control loop off and until a
contrary event is sent, the cruise control interface should not try to send new
cruise speed setpoints.

@ The cruise speed setpoint should not be below 40 km/h or above 180 km/h.

© When the system is engaged, the cruise speed setpoint should be defined.

Design model
Made using a UML subset that can be represented by:
o Class diagram

o Composite structure diagram

@ State machines
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UML Observer Automata

Expressed directly in the design language
o UML class + UML state machine with fail states

@ Extension of the expression language to read objects of the system and their
properties

Requirements on observer automata

@ Read-only access to system objects
o UML observer state machines must be:

o Deterministic to avoid introducing non-determinism in the observed system
execution
o Complete to avoid blocking the system execution

Expressivity = safety properties (something bad happens)

@ Analysis of finite execution traces for monitoring (current run)

@ Verification problem reduced to a reachability problem (observer fail states)

v
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UML Observer Automata

Cruise control interface requirements

@ After the detection of an event that turns the control loop off and until a
contrary event is sent, the cruise control interface should not try to send new
cruise speed setpoints.

@ The cruise speed setpoint should not be below 40 km/h or above 180 km/h.
© When the system is engaged, the cruise speed setpoint should be defined.

Observerl Observer2 Observer3
3 [evOnSent]
IDisengaged Engaged ] Running Running
[evOffSent]
[!(intervalCS || unknownCS)] [ccsEngaged && unknownCS]

[evUpdateSetPointSent]
A, A,

Fail Fail Fail

D,
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UML Observer Automata (Interpretation for Analysis Activities)

Cruise control interface requirements

@ After the detection of an event that turns the control loop off and until a
contrary event is sent, the cruise control interface should not try to send new

cruise speed setpoints.

@ The cruise speed setpoint should not be below 40 km/h or above 180 km/h.
© When the system is engaged, the cruise speed setpoint should be defined.

Observerl

3 [evOnSent]

C;[ Disengaged
[evOffSent]

«implicit>

Engaged

mplicit>

[evUpdateSetPointSent]

A,

«implicit>
«implicit»: Not created by users

Valentin BESNARD (ESEO-TECH)
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Running «implicit»

[!(intervalCS || unknownCS)]

A,
Fail «implicit>
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Observer3

Running «implicit»

[ccsEngaged && unknownCS]

A,

Fail «implicit»

September 10th| 2010 17 / 31



Table of Contents

@ Monitoring Activities

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 18 / 31



Monitoring Activities

Synchronous Composition

Principle

Each time a transition of the system model is fired, each observer automaton also
makes a step to follow the system execution.

@ At each step, a synchronous
transition must be fired

@ A synchronous transition is
composed of:

o One transition of the system
o One transition per observer
automaton
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Monitoring Activities

Synchronous Composition

Principle

Each time a transition of the system model is fired, each observer

automaton also

makes a step to follow the system execution.

@ At each step, a synchronous
transition must be fired
@ A synchronous transition is
composed of:
o One transition of the system
o One transition per observer
automaton
o The UML semantics
extension on which our
approach relies

@ Synchronous transitions are
built on-the-fly for an
efficient execution
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<< component >>
Design Model

[ | [ |
A A

<< component >> ‘

Monitors Model

Interpreter Component

|
i
|
1<< interprets >>
|

|
:
| << interprets >>
|

<< component >> << component >>
System Interpreter Observers Interpreter
N 7
N\, << uses >>

Scheduling \

Policy << component >> g
W< /
<< delegates >> Scheduler /
N /

\}\\ //
<< uses >>"\ / << uses >>
AN /

<< component >>
Synchronous Composition

<< uses >>

A
i
Sequencer .‘
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Runtime Monitoring with UML Observer Automata

<< component >>

Execution Environment

<< component >> ‘ ‘ << component >>

Design Model Monitors Model

Interpreter Component

Scheduling
L] Policy

Sequencer
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Monitoring Activities

Runtime Monitoring with UML Observer Automata

@ Use the actual scheduling policy

(e.g., round robin on active objects)
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<< component >>

Execution Environment

<< component >>

<< component >>
Monitors Model

Design Model

| |

Interpreter Component
Scheduling

L]

<< component >>
Actual Scheduling Policy

Policy Sequencer
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Monitoring Activities

Runtime Monitoring with UML Observer Automata

@ Use the actual scheduling policy
(e.g., round robin on active objects)

@ Use the execution sequencer that
fires synchronous transitions in loop
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<< component >>

Execution Environment

<< component >>

<< component >>
Monitors Model

Design Model

<< component >>
Actual Scheduling Policy

[ |
Interpreter Component

Scheduling
[ ] Policy Sequencer

<< component >>
Sequencer
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Monitoring Activities

Runtime Monitoring with UML Observer Automata

<< component >>

Execution Environment

@ Use the actual scheduling policy

(e.g., round robin on active objects)

@ Use the execution sequencer that

fires synchronous transitions in loop

@ Check the current state of each
observer at each step

Valentin BESNARD (ESEO-TECH)

Design Model

‘ << component >>

<< component >>
Monitors Model

<< component >>
Actual Scheduling Policy

Interpreter Component

Scheduling
L] Policy

Sequencer

‘ << component >>

Observers Asserting

<

<< component >>

Sequencer

J_‘Monitoring Status

=
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Monitoring Activities

Additional Usage: Model-checking with UML Observer

Automata

@ Use an abstraction of the scheduling

policy to explore the whole model
state-space

@ The model-checker only has to use

a reachability algorithm

o [] !'|0OBSERVER_FAIL(obs) |

Valentin BESNARD (ESEO-TECH)

<< component >>

Execution Environment

<< component >>

Design Model Monitors Model

‘ << component >> ‘ ‘

Interpreter Component

<< component >>

Scheduling Policy Abstraction

Schedulin
B 9

Policy Sequencer
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communication link O

<< component >>
Model-checker
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Application to the Illustrating Example

Cruise Control Interface Model Under Verification

model under verification = system model + abstract environment model

)

Main

env : Env

clutchPedal : Pedal

Ibuttons : Buttonsl

brakePedal : Pedal l

I engine : Engine l

throttlePedal : Pedal

oL H

IR

pm : PedalsManager

actuation : Actuation

4[controller : Controller]—[ csm : CruiseSpeedManager

Valentin BESNARD (ESEO-TECH)
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Names of ports

cciButtonsPort

e) cciOnOffPort
f) cciSpeedPort

i) pmBrakePedalPort

cciBrakePedalPort

a)

b) cciClutchPedalPort
)

d) cciThrottlePedalPort

g) cciCruiseSpeedPort
h) pmClutchPedalPort

j) pmThrottlePedalPort
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Application to the Illustrating Example

Experiments m
e,

LTL Formula UML Model

A Y

1 Embedded Model
OBP2 Model-checker or Interpreter (EMI)

Experiments

o Compare verification results obtained with:
o LTL formulae

![Teodorov et al., 2017] https://plug-obp.github.io/
MODELS'1s T ——
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Experiments m

o,

UML Model

UML Observer Automata

Y
1 Embedded Model
_ !i 0OBP2 Model-checker Interpreter (EMI)

TCP

Experiments
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o UML observer automata
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Application to the Illustrating Example

Experiments m

o,

UML Model

UML Observer Automata

Y
1 Embedded Model
_ i 0OBP2 Model-checker Interpreter (EMI)

TCP

Experiments

@ Compare verification results obtained with:
o LTL formulae
o UML observer automata

@ Use to same UML observer automata to make runtime monitoring

![Teodorov et al., 2017] https://plug-obp.github.io/
MODELS'1s T ——
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Model-Checking of the Level Crossing Model m

Expression of properties as LTL formulae

@ [1 ((levOffSent| and !|evOnSent|) -> (!|evUpdateSetPointSent| W |evOnSent|))

@ [0 (lintervalCS| or |unknownCS|)
© [1 (lccsEngaged| -> !|unknownCS|)

Expression of properties as UML observer automata

Observerl

3 [evOnSent]

[DisengagedJ:[ Engaged ]

[evOffSent]

[evUpdateSetPointSent]

Observer2

Running

[!(intervalCS || unknownCS)]

A

Observer3

Running

[ccsEngaged && unknownCS]

i
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Results - Model-checking m

0 ae Observer Automata
Property 1 v v
Property 2 v v
Property 3 X X
v': Property verified X: Property violated

Analysis of the counter-example

Events resetCS and disengage could be processed in any order
= Bad event interleaving

Model state-space
46,444,386 configurations linked by 82,734,350 transitions
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Results - Monitoring m

d ode cd ode
Property 1 o [
Property 2 [ o
Property 3 [ [
®: No failure detected @®: Failure detected

Overhead of the monitoring infrastructure
@ Execution performance: +6.5%
@ Memory footprint: +1.2%
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Results - Monitoring m

d ode cd ode
Property 1 [ [
Property 2 [ o
Property 3 [ [
®: No failure detected @®: Failure detected

Execution performance

@ Estimation of the overhead:

overhead ~ 6.5 +

N

1 Z nb_ states;

nb ao“4 1 nb_outgoings;

_ SO

@ Relative cost of observer automata decreases as the size of the system model
increases.
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Conclusion

Conclusion

Problems
© Semantic gap between monitors model and monitors code

© Languages used to express monitors and design models are usually different
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Conclusion
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© Languages used to express monitors and design models are usually different
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Proposed solution

@ Express properties as UML observer automata directly in the design language

@ Embed these monitors with our model interpreter
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Conclusion

Conclusion

Problems
© Semantic gap between monitors model and monitors code

© Languages used to express monitors and design models are usually different

v

Proposed solution

@ Express properties as UML observer automata directly in the design language

@ Embed these monitors with our model interpreter

Results
@ No more semantic gap

@ Only one language to express system and monitors models

= Helps engineers verify and monitor the embedded systems they are designing
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Conclusion

Conclusion

Benefits

@ The same UML observer automata can be used for model verification and
runtime monitoring

@ The use of formal verification techniques by engineers is facilitated
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Conclusion

Benefits

@ The same UML observer automata can be used for model verification and
runtime monitoring

@ The use of formal verification techniques by engineers is facilitated

Drawbacks

@ Only observed failures can be detected

@ Monitoring overhead (does not impede scalability)

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 30 / 31



Conclusion

Conclusion

Benefits

@ The same UML observer automata can be used for model verification and
runtime monitoring

@ The use of formal verification techniques by engineers is facilitated

Drawbacks
@ Only observed failures can be detected

@ Monitoring overhead (does not impede scalability)

Perspectives

o Extend expressivity of guards in UML observer automata

o Integrate other model-based specification formalisms
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Conclusion

Thank you for your attention
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