Verifying and Monitoring UML Models

with Observer Automata

A Transformation-free Approach

ACM/IEEE 22" International Conference on Model Driven Engineering
Languages and Systems (MODELS'19) in Munich, Germany

Valentin BESNARD ' Ciprian TEODOROQOV 2 Frédéric JOUAULT 1!
Matthias BRUN ! Philippe DHAUSSY 2

! ERIS, ESEO-TECH, 2 Lab-STICC UMR CNRS 6285, This work has been partially
Angers, France ENSTA Bretagne, Brest, France funded by Davidson.

. 3¢
CSCO EHENSA oavioson

CONSULTING

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19‘“, 2019 1/31

Table of Contents

© Introduction

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 2 /31

Context

Observations

@ Increasing complexity and connectivity of embedded systems

= Increasing exposure to potential software failures
= Increasing difficulty to detect, understand, and fix software failures

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 3 /31

Context

Observations

@ Increasing complexity and connectivity of embedded systems

= Increasing exposure to potential software failures
= Increasing difficulty to detect, understand, and fix software failures

Need for V&V at all design stages

@ Testing or proving that a system satisfies its expected properties

o Possibly relying on environment abstractions
(inputs to consider and execution platform)

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 3 /31

Context

Observations

@ Increasing complexity and connectivity of embedded systems

= Increasing exposure to potential software failures
= Increasing difficulty to detect, understand, and fix software failures

Need for V&V at all design stages

@ Testing or proving that a system satisfies its expected properties

o Possibly relying on environment abstractions
(inputs to consider and execution platform)

Need for runtime monitoring

o Detecting safety property violations at runtime (with the actual environment)

@ Making it possible to trigger safe system recovery procedures

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 3 /31

Introduction

Overview

Goal

Provide a technique to execute models on embedded targets with facilities to
perform model-checking and runtime monitoring on these models

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 4 /31

Introduction

Overview

Goal

Provide a technique to execute models on embedded targets with facilities to
perform model-checking and runtime monitoring on these models

Our previous work [Besnard et al., MODELS 2018]

@ lIdentified problems on classical model-checking approaches

© Introduced a solution based on a model interpreter

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 4 /31

Introduction

Overview

Goal

Provide a technique to execute models on embedded targets with facilities to
perform model-checking and runtime monitoring on these models

Our previous work [Besnard et al., MODELS 2018]

@ lIdentified problems on classical model-checking approaches

© Introduced a solution based on a model interpreter

In this work

© Identify problems on classical monitoring approaches

@ Can we address these problems with the model interpreter approach?

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19“‘, 2019 4 /31

(1) Classical Approach with Model-checking

| Requirements Specification |

expression in a
formal language

system modeling in -
a design language Formal Properties
Design Model

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 5 /31

(1) Classical Approach with Model-checking

| Requirements Specification |

expression in a
formal language

system modeling in — i
a design language Formal Properties

Design Model

transformation

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19“‘, 2019 5 /31

(1) Classical Approach with Model-checking

| Requirements Specification |

expression in a
formal language

system modeling in - .
a design language Formal Properties

transformation

Environment

Execution Environment

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19“‘, 2019 5 /31

(1) Classical Approach with Model-checking (Problems)

| Requirements Specification |

expression in a
formal language

system modeling in O -
a design language Formal Properties
q Models
Design Model model for Analysis

code generation transformation

Equivalence
Problem

Environment

Execution Environment

Problems: Two semantic gaps and an equivalence problem
caused by transformations of the design model into different languages

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19“‘, 2019 6 /31

(2) Our Approach with Model-checking [gesnard et al., MODELS 201g]

| Requirements Specification |

expression in a
formal language

system modeling in -
a design language Formal Properties
Design Model

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 7 /31

(2) Our Approach with Model-checking [gesnard et al., MODELS 2018]

| Requirements Specification |

expression in a
formal language

system modeling in -
a design language Formal Properties
Design Model
A

interprets
Execution Environment

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19“‘, 2019 7 /31

(2) Our Approach with Model-checking [gesnard et al., MODELS 201g]

| Requirements Specification |

expression in a
formal language

system modeling in -
a design language Formal Properties
Design Model

A
interprets

Interpreter Component

Execution Environment

A unique definition of the language semantics
for verification activities and model execution

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 7 /31

(3) Classical Approach with Monitoring

Requirements Specification

system modeling in
a design language

Design Model |(—

Valentin BESNARD (ESEO-TECH)

expression as
observer
automata

MODELS'19

expression in a
formal language

Formal Properties

- ——-OR-——-]

—-- Monitors Model
observes

ﬂ) transformation

September 19“‘, 2019

8 /31

(3) Classical Approach with Monitoring

| Requirements Specification

expression in a
formal language

[expression as
system modeling in .
a design language observer Formal Properties
automata
ﬂ) transformation

code generation code generation

- ——-OR-——-]

Environment

Execution Environment

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 8 /31

Introduction

(3) Classical Approach with Monitoring (Problems)

| Requirements Specification

expression as
observer
automata

system modeling in
a design language

code generation

- ——-OR-——-]

expression in a
formal language

Formal Properties

1

transformation

Environment

Execution Environment

© Semantic gap between monitors model and monitors code

Valentin BESNARD (ESEO-TECH) MODELS'19

September 19“‘, 2019

9 /31

Introduction

(3) Classical Approach with Monitoring (Problems)

| Requirements Specification

expression in a

~~—~OR-—-- formal language

system modeling in elebserver
a design language
9 guag automata

code generation

as

Formal Properties

_l transformation
\JJ

Environment

Execution Environment

© Semantic gap between monitors model and monitors code

© Languages used to express monitors and design models are usually different

Valentin BESNARD (ESEO-TECH) MODELS'19

September 10th| 2010 9 /31

Introduction

(3) Classical Approach with Monitoring (Problems)

| Requirements Specification

expression in a

~~—~OR-—-- formal language

system modeling in ex:'bserver
a design language
9 guag automata

code generation

as

Formal Properties

_l transformation
\JJ

Environment

Execution Environment

© Semantic gap between monitors model and monitors code

© Languages used to express monitors and design models are usually different

Valentin BESNARD (ESEO-TECH) MODELS'19

September 10th| 2010 9 /31

(4) Our Approach with Monitoring

| Requirements Specification

expression of

observer
system modeling in automata in
a design language same design
language

Design Model

Valentin BESNARD (ESEO-TECH) MODELS'19

expression in a
formal language

Formal Properties

- ——-OR-——-|

transformation

Monitors Model

September 19"‘ , 2019

10 / 31

(4) Our Approach with Monitoring

| Requirements Specification

expression in a

l-——-OR-——-]|
formal language

expression of
observer

system modeling in automata in E i
H ormal Properties
a design language same design e

language transformation
—

Design Model Monitors Model

interprets interprets

1/0
Interpreter Component

Execution Environment

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 10 / 31

(4) Our Approach with Monitoring

Requirements Specification

system modeling in
a design language

expression of
observer
automata in
same design
language

expression in a
formal language

Formal Properties

- ——-OR-——-|

transformation
—

Design Model

interprets

Monitors Model

interprets

1/0

Interpreter Component

Execution Environment

The same component interprets both design and monitors models:

@ No semantic gap

@ Only one language to express system and monitors models

Valentin BESNARD (ESEO-TECH)

MODELS'19

September 19“‘ , 2019

10 / 31

Table of Contents

© Introduction

© lllustrating Example

© Expressing Properties as UML Observer Automata
© Monitoring Activities

© Application to the lllustrating Example

@ Conclusion

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 11 / 31

Table of Contents

© lllustrating Example

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 12 / 31

Cruise Control Overview m

<< component >>

DeployedSystem

<< component >>

CruiseControlSystem

<< component >> << component >>
CruiseControlinterface ControlLoop
speed speed command [>]
throttlePedal cruiseSpeed cruiseSpeed
brakePedal on/off on/off
clutchPedal
buttons

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 13 / 31

Cruise Control Overview m

<< component >>

DeployedSystem

<< component >>
ThrottlePedal PhysicalEnvironment commandCCS
command environment environment speed
pedal commandThrottle

<< component >>

BrakePedal

<< component >> |

<< component >> PhysicalVehicle

<< component >>

pedal CruiseControlSystem

<< component >> << component >> << component >>
ClutchPedal CruiseControlinterface ControlLoop
pedal speed speed command [P
throttlePedal cruiseSpeed cruiseSpeed
<< component >> brakePedal on/off on/off
Buttons clutchPedal
buttons buttons

Valentin BESNARD (ESEO-TECH) MODELS'19 September 10th 2010 13 / 31

Cruise Control Overview zi\)

<< component >>

DeployedSystem

<< component >>

<< component >>
ThrottlePedal PhysicalEnvironment commandCCS
command environment environment speed
pedal commandThrottle

<< component >>

BrakePedal

<< component >> PhysicalVehicle

<< component >>

pedal CruiseControlSystem

<< component >> << component >> << component >>
ClutchPedal CruiseControlinterface ControlLoop
pedal speed speed command [P
throttlePedal cruiseSpeed cruiseSpeed
<< component >> brakePedal on/off on/off
Buttons clutchPedal
buttons buttons

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 13 / 31

Cruise Control Interface Requirements zi\)

System requirements

@ After the detection of an event that turns the control loop off and until a
contrary event is sent, the cruise control interface should not try to send new
cruise speed setpoints.

@ The cruise speed setpoint should not be below 40 km/h or above 180 km/h.

© When the system is engaged, the cruise speed setpoint should be defined.

Design model
Made using a UML subset that can be represented by:
o Class diagram

o Composite structure diagram

@ State machines

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 14 / 31

Table of Contents

© Expressing Properties as UML Observer Automata

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 15 / 31

UML Observer Automata

Expressed directly in the design language
o UML class + UML state machine with fail states

@ Extension of the expression language to read objects of the system and their
properties

Requirements on observer automata

@ Read-only access to system objects
o UML observer state machines must be:

o Deterministic to avoid introducing non-determinism in the observed system
execution
o Complete to avoid blocking the system execution

Expressivity = safety properties (something bad happens)

@ Analysis of finite execution traces for monitoring (current run)

@ Verification problem reduced to a reachability problem (observer fail states)

v

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 16 / 31

UML Observer Automata

Cruise control interface requirements

@ After the detection of an event that turns the control loop off and until a
contrary event is sent, the cruise control interface should not try to send new
cruise speed setpoints.

@ The cruise speed setpoint should not be below 40 km/h or above 180 km/h.
© When the system is engaged, the cruise speed setpoint should be defined.

Observerl Observer2 Observer3
3 [evOnSent]
IDisengaged Engaged] Running Running
[evOffSent]
[!(intervalCS || unknownCS)] [ccsEngaged && unknownCS]

[evUpdateSetPointSent]
A, A,

Fail Fail Fail

D,

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 17 / 31

UML Observer Automata (Interpretation for Analysis Activities)

Cruise control interface requirements

@ After the detection of an event that turns the control loop off and until a
contrary event is sent, the cruise control interface should not try to send new

cruise speed setpoints.

@ The cruise speed setpoint should not be below 40 km/h or above 180 km/h.
© When the system is engaged, the cruise speed setpoint should be defined.

Observerl

3 [evOnSent]

C;[Disengaged
[evOffSent]

«implicit>

Engaged

mplicit>

[evUpdateSetPointSent]

A,

«implicit>
«implicit»: Not created by users

Valentin BESNARD (ESEO-TECH)

Observer2

Running «implicit»

[!(intervalCS || unknownCS)]

A,
Fail «implicit>

MODELS'19

Observer3

Running «implicit»

[ccsEngaged && unknownCS]

A,

Fail «implicit»

September 10th| 2010 17 / 31

Table of Contents

@ Monitoring Activities

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 18 / 31

Monitoring Activities

Synchronous Composition

Principle

Each time a transition of the system model is fired, each observer automaton also
makes a step to follow the system execution.

@ At each step, a synchronous
transition must be fired

@ A synchronous transition is
composed of:

o One transition of the system
o One transition per observer
automaton

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 19 / 31

Monitoring Activities

Synchronous Composition

Principle

Each time a transition of the system model is fired, each observer

automaton also

makes a step to follow the system execution.

@ At each step, a synchronous
transition must be fired
@ A synchronous transition is
composed of:
o One transition of the system
o One transition per observer
automaton
o The UML semantics
extension on which our
approach relies

@ Synchronous transitions are
built on-the-fly for an
efficient execution

Valentin BESNARD (ESEO-TECH)

MODELS'19

<< component >>
Design Model

[| [|
A A

<< component >> ‘

Monitors Model

Interpreter Component

|
i
|
1<< interprets >>
|

|
:
| << interprets >>
|

<< component >> << component >>
System Interpreter Observers Interpreter
N 7
N\, << uses >>

Scheduling \

Policy << component >> g
W< /
<< delegates >> Scheduler /
N /

\}\\ //
<< uses >>"\ / << uses >>
AN /

<< component >>
Synchronous Composition

<< uses >>

A
i
Sequencer .‘

September 10th| 2010 19 / 31

Runtime Monitoring with UML Observer Automata

<< component >>

Execution Environment

<< component >> ‘ ‘ << component >>

Design Model Monitors Model

Interpreter Component

Scheduling
L] Policy

Sequencer

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 20 / 31

Monitoring Activities

Runtime Monitoring with UML Observer Automata

@ Use the actual scheduling policy

(e.g., round robin on active objects)

Valentin BESNARD (ESEO-TECH)

<< component >>

Execution Environment

<< component >>

<< component >>
Monitors Model

Design Model

| |

Interpreter Component
Scheduling

L]

<< component >>
Actual Scheduling Policy

Policy Sequencer

MODELS'19

September 19th, 2010 20/ 31

Monitoring Activities

Runtime Monitoring with UML Observer Automata

@ Use the actual scheduling policy
(e.g., round robin on active objects)

@ Use the execution sequencer that
fires synchronous transitions in loop

Valentin BESNARD (ESEO-TECH)

<< component >>

Execution Environment

<< component >>

<< component >>
Monitors Model

Design Model

<< component >>
Actual Scheduling Policy

[|
Interpreter Component

Scheduling
[] Policy Sequencer

<< component >>
Sequencer

MODELS'19

September 19th, 2010 20/ 31

Monitoring Activities

Runtime Monitoring with UML Observer Automata

<< component >>

Execution Environment

@ Use the actual scheduling policy

(e.g., round robin on active objects)

@ Use the execution sequencer that

fires synchronous transitions in loop

@ Check the current state of each
observer at each step

Valentin BESNARD (ESEO-TECH)

Design Model

‘ << component >>

<< component >>
Monitors Model

<< component >>
Actual Scheduling Policy

Interpreter Component

Scheduling
L] Policy

Sequencer

‘ << component >>

Observers Asserting

<

<< component >>

Sequencer

J_‘Monitoring Status

=

MODELS'19

September 10th , 2019

20/ 31

Monitoring Activities

Additional Usage: Model-checking with UML Observer

Automata

@ Use an abstraction of the scheduling

policy to explore the whole model
state-space

@ The model-checker only has to use

a reachability algorithm

o [] !'|0OBSERVER_FAIL(obs) |

Valentin BESNARD (ESEO-TECH)

<< component >>

Execution Environment

<< component >>

Design Model Monitors Model

‘ << component >> ‘ ‘

Interpreter Component

<< component >>

Scheduling Policy Abstraction

Schedulin
B 9

Policy Sequencer

MODELS'19

communication link O

<< component >>
Model-checker

September 19th, 2010 21 /31

Table of Contents

© Application to the lllustrating Example

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 22 /31

Application to the Illustrating Example

Cruise Control Interface Model Under Verification

model under verification = system model + abstract environment model

)

Main

env : Env

clutchPedal : Pedal

Ibuttons : Buttonsl

brakePedal : Pedal l

I engine : Engine l

throttlePedal : Pedal

oL H

IR

pm : PedalsManager

actuation : Actuation

4[controller : Controller]—[csm : CruiseSpeedManager

Valentin BESNARD (ESEO-TECH)

MODELS'19

Names of ports

cciButtonsPort

e) cciOnOffPort
f) cciSpeedPort

i) pmBrakePedalPort

cciBrakePedalPort

a)

b) cciClutchPedalPort
)

d) cciThrottlePedalPort

g) cciCruiseSpeedPort
h) pmClutchPedalPort

j) pmThrottlePedalPort

September 10th , 2019

23 /31

Application to the Illustrating Example

Experiments m
e,

LTL Formula UML Model

A Y

1 Embedded Model
OBP2 Model-checker or Interpreter (EMI)

Experiments

o Compare verification results obtained with:
o LTL formulae

![Teodorov et al., 2017] https://plug-obp.github.io/
MODELS'1s T ——

https://plug-obp.github.io/

Application to the Illustrating Example

Experiments m

o,

UML Model

UML Observer Automata

Y
1 Embedded Model
_ !i 0OBP2 Model-checker Interpreter (EMI)

TCP

Experiments

@ Compare verification results obtained with:

o LTL formulae
o UML observer automata

![Teodorov et al., 2017] https://plug-obp.github.io/
MODELS'1s T ——

https://plug-obp.github.io/

Application to the Illustrating Example

Experiments m

o,

UML Model

UML Observer Automata

Y
1 Embedded Model
_ i 0OBP2 Model-checker Interpreter (EMI)

TCP

Experiments

@ Compare verification results obtained with:
o LTL formulae
o UML observer automata

@ Use to same UML observer automata to make runtime monitoring

![Teodorov et al., 2017] https://plug-obp.github.io/
MODELS'1s T ——

https://plug-obp.github.io/

Model-Checking of the Level Crossing Model m

Expression of properties as LTL formulae

@ [1 ((levOffSent| and !|evOnSent|) -> (!|evUpdateSetPointSent| W |evOnSent|))

@ [0 (lintervalCS| or |unknownCS|)
© [1 (lccsEngaged| -> !|unknownCS|)

Expression of properties as UML observer automata

Observerl

3 [evOnSent]

[DisengagedJ:[Engaged]

[evOffSent]

[evUpdateSetPointSent]

Observer2

Running

[!(intervalCS || unknownCS)]

A

Observer3

Running

[ccsEngaged && unknownCS]

i

Valentin BESNARD (ESEO-TECH)

MODELS'19

September 10th| 2010 25 / 31

Results - Model-checking m

0 ae Observer Automata
Property 1 v v
Property 2 v v
Property 3 X X
v': Property verified X: Property violated

Analysis of the counter-example

Events resetCS and disengage could be processed in any order
= Bad event interleaving

Model state-space
46,444,386 configurations linked by 82,734,350 transitions

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 26 / 31

Results - Monitoring m

d ode cd ode
Property 1 o [
Property 2 [o
Property 3 [[
®: No failure detected @®: Failure detected

Overhead of the monitoring infrastructure
@ Execution performance: +6.5%
@ Memory footprint: +1.2%

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 27 / 31

Results - Monitoring m

d ode cd ode
Property 1 [[
Property 2 [o
Property 3 [[
®: No failure detected @®: Failure detected

Execution performance

@ Estimation of the overhead:

overhead ~ 6.5 +

N

1 Z nb_ states;

nb ao“4 1 nb_outgoings;

_ SO

@ Relative cost of observer automata decreases as the size of the system model
increases.

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 27 / 31

Table of Contents

@ Conclusion

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 28 / 31

Conclusion

Conclusion

Problems
© Semantic gap between monitors model and monitors code

© Languages used to express monitors and design models are usually different

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 29 / 31

Conclusion

Conclusion

Problems
© Semantic gap between monitors model and monitors code

© Languages used to express monitors and design models are usually different

v

Proposed solution

@ Express properties as UML observer automata directly in the design language

@ Embed these monitors with our model interpreter

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 29 / 31

Conclusion

Conclusion

Problems
© Semantic gap between monitors model and monitors code

© Languages used to express monitors and design models are usually different

v

Proposed solution

@ Express properties as UML observer automata directly in the design language

@ Embed these monitors with our model interpreter

Results
@ No more semantic gap

@ Only one language to express system and monitors models

= Helps engineers verify and monitor the embedded systems they are designing

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 29 / 31

Conclusion

Conclusion

Benefits

@ The same UML observer automata can be used for model verification and
runtime monitoring

@ The use of formal verification techniques by engineers is facilitated

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 30 / 31

Conclusion

Conclusion

Benefits

@ The same UML observer automata can be used for model verification and
runtime monitoring

@ The use of formal verification techniques by engineers is facilitated

Drawbacks

@ Only observed failures can be detected

@ Monitoring overhead (does not impede scalability)

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 30 / 31

Conclusion

Conclusion

Benefits

@ The same UML observer automata can be used for model verification and
runtime monitoring

@ The use of formal verification techniques by engineers is facilitated

Drawbacks
@ Only observed failures can be detected

@ Monitoring overhead (does not impede scalability)

Perspectives

o Extend expressivity of guards in UML observer automata

o Integrate other model-based specification formalisms

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 30 / 31

Conclusion

Thank you for your attention

CSCO @ensm | €

cccccccc

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19"‘, 2019 31 /31

|
Bibliography

@ Valentin Besnard, Matthias Brun, Frédéric Jouault, Ciprian Teodorov, and Philippe Dhaussy.
Unified LTL Verification and Embedded Execution of UML Models.
In ACM/IEEE 21th International Conference on Model Driven Engineering Languages and Systems
(MODELS ’'18), Copenhagen, Denmark, October 2018.

4 ome.

Unified Modeling Language, December 2017.
https://www.omg.org/spec/UML/2.5.1/PDF.

@ Ciprian Teodorov, Philippe Dhaussy, and Luka Le Roux.
Environment-driven reachability for timed systems.

International Journal on Software Tools for Technology Transfer, 19(2):229-245, Apr 2017.

@ Ciprian Teodorov, Luka Le Roux, Zoé Drey, and Philippe Dhaussy.

Past-Free[ze] reachability analysis: reaching further with DAG-directed exhaustive state-space
analysis.
Software Testing, Verification and Reliability, 26(7):516-542, 2016.

Valentin BESNARD (ESEO-TECH) MODELS'19 September 19':'", 2019 1/1

https://www.omg.org/spec/UML/2.5.1/PDF

	Introduction
	Illustrating Example
	Expressing Properties as UML Observer Automata
	Monitoring Activities
	Application to the Illustrating Example
	Conclusion
	Appendix

