
Partially Bounded Context-Aware Verification

Luka Le Roux and Ciprian Teodorov

Lab-STICC, MOCS, CNRS UMR 6285, ENSTA Bretagne, France

Abstract. Model-checking enables the formal verification of software
systems. Powerful and automated, this technique suffers, however, from
the state-space explosion problem because of the exponential growth in
the number of states with respect to the number of interacting compo-
nents. To address this problem, the Context-aware Verification (CaV)
approach decomposes the verification problem using environment-based
guides. This approach improves the scalability but it requires an acyclic
specification of the verification guides, which are difficult to specify with-
out losing completeness.
In this paper, we present a new verification strategy that generalises CaV
while ensuring the decomposability of the state-space. The approach re-
lies on a language for the specification of the arbitrary guides, which
relaxes the acyclicity requirement, and on a partially-bounded verifica-
tion procedure.
The effectiveness of our approach is showcased through a case-study from
the aerospace domain, which shows that the scalability is maintained
while easing the conception of the verification guides.

1 Introduction

Since its introduction in the early 1980s, model-checking [23, 11] provides an au-
tomated formal approach for the verification of complex requirements of hard-
ware and software systems. This technique relies on the exhaustive analysis of all
states in the system to check if it correctly implements the specifications, usually
expressed using temporal logics. However, because of the internal complexity of
the studied systems, model-checking is often challenged with an unmanageable
large state-space, a problem known as the state-space explosion problem [8, 21].
Numerous techniques [28, 9, 7, 31, 1, 12] have been proposed to reduce the impact
of this problem effectively pushing the inherent limits of model-checking further
and further.

Amongst these techniques, the Context-aware Verification (CaV) approach
[12, 14, 16] proposes to separately capture the open system and its environment.
From the specifications, the first step of CaV is to formally capture the open
system and its contexts (environment and property). Each context and the open
system are the inputs to a verification task. From there, if one or several tasks
do not scale, CaV offers different automated context-driven techniques for fur-
ther problem decomposition [13] and for efficient memory management during
reachability [26].

2 Luka Le Roux and Ciprian Teodorov

This approach was applied to realistic case studies from the medical [5], auto-
motive [25], and aerospace [15, 24] domains with very promising results. However,
the CaV approach imposes an acyclicity constraint on the verification contexts,
which limits expressiveness and renders the approach difficult to use in practice.
This limitation impacts the verification engineers who need to manually extract
and validate an acyclic model from the environment model. In many cases, the
environment behaviours are inherently cyclic and require a verbose and error-
prone manual unrolling up to an arbitrarily-chosen depth. Furthermore, when
an acyclic model is available, the designer needs to prove its completeness with
respects to the complete environment model, problem which is not addressed in
the CaV literature.

In this paper, we address these problems through a new verification strategy
that generalises CaV. Most notably it enables the specification of cyclic inter-
action scenarios and uses the closed system as its entry point. The approach is
based on an eXtended Guide Description Language (xGDL) and on a partially-
bounded verification strategy. The later automatically unrolls these cyclic veri-
fication guides (previously referred as context1) to an arbitrary depth. Through
this approach the verification engineer is relieved of two tedious tasks: a) ex-
tracting the acyclic interaction scenarios from a previously defined environment
model, and b) proving the completeness of the extracted scenarios with respect
to the full environment model. Moreover, this approach explicitly exposes the
unrolling depth of the verification guides as a sufficient completeness criteria
for the verification. Showing that this bound is sufficient for completeness may
be simpler than proving that the length of all paths is sufficient. The core of
any model-checking strategy, the reachability analysis, up to the reachability
diameter of the system, is necessary for the verification of safety and bounded-
liveness properties. In general, our approach aims at the verification of arbitrary
properties, however, in the context of this paper we focus on the reachability
analysis.

The approach is validated on an aircraft Landing Gear System (LGS), intro-
duced in [6]. Through this case-study we emphasis: a) the usage of xGDL for
modelling verification guides, used for closing the system for verification, and for
guiding the reachability procedure; b) a state-space decomposition procedure
based on the syntactic rewriting of the verification guides, and; c) some reach-
ability results, obtained through the complementarity of our partially-bounded
reachability analysis in conjunction with the CaV state-space decomposition
strategies.

Section 2 introduces the related work focusing on the CaV approach and
its similarities to Bounded Model Checking (BMC). Section 3 describes our
main contribution, the semantics of the guide description language, the partially-
bounded verification procedure and discusses the completeness conditions. Sec-
tion 4 presents LGS system and the associated xGDL model along with the ob-

1 Contexts and guides: CaV uses the open system (no environment) and a context
as an entry point. The generalisation presented in this paper uses the closed system
instead and restrict its environment through a [verification] guide.

Partially Bounded Context-Aware Verification 3

tained results. Section 5 concludes this study introducing some future research
directions.

2 Background & Related Work

Model checking is a technique that relies on building a finite model of a system of
interest, and checking that a desired property, typically specified as a temporal
logic formula, holds for that model. Since the introduction of model-checking in
the early 1980s [23], several model-checker tools have been developed to help the
verification of concurrent systems [18, 2, 31].

However, while model-checking provides an automated rigorous framework
for formal system validation and verification, and has successfully been applied
on industrial systems it suffers from the state-space explosion problem. This is
due to the exponential growth of the number of reacheable states with respect
to the number of interacting components. To enable the verification of ever
larger systems, numerous research efforts are focused on reducing the impact of
the state-space explosion problem. Some of these approaches use efficient data-
structures such as BDD [7] for achieving compact state-space representation.
Other approaches prune the state-space using techniques such as partial-order
reduction [17, 22, 28] and symmetry reduction [9] that exploit fine-grain transi-
tion interleaving symmetries and global system symmetries respectively.

Complementary to these, are techniques based on the specification of environ-
ments relevant to the studied system [20, 30, 27, 24]. These approaches propose
tools that generate environments, based either on assumptions on the system
and its interactions with the environment [27, 20], or on the properties that need
to be verified [30]. Amongst these, the Context-aware Verification(CaV) pro-
vides a structured approach for capturing the verification problem through a
number of independent verification contexts (referred simply as contexts in the
following), which explicitly represent the restricted model behaviours along with
the requirements to be verified. The model is decomposed in two components:
the system-under-study and the environment. While the system specification is
viewed as a black-box that never changes during the verification, the environ-
ment model is decomposed in multiple acyclic interaction scenarios, expressed
with the Context Definition Language (CDL). The verification contexts are cre-
ated by associating to each interaction scenario the relevant properties. The
verification process iteratively composes these contexts with the system to ver-
ify the associated properties. The CaV approach imposes a formal, methodical
decomposition and classification of large requirements sets, a first step in over-
coming the state-space explosion problem. To guarantee the exhaustiveness of
the analysis, the verification should be accompanied by a completeness proof
showing that all behaviours unrolled by the guide are sufficient.

CaV relies on CDL formalism to specify the verification guides separately
from the system. The core concept of the CDL language is the context, which
associates the requirements to be verified to a verification guide (an acyclic
component communicating asynchronously with the system). The interaction of

4 Luka Le Roux and Ciprian Teodorov

the system with the environment is specified through a number of interaction
scenarios. The interleaving of these interaction scenarios generates a transition
system representing all the bounded behaviours of the environment, which can
be fed as input to model-checkers. Moreover, CDL enables the specification of
requirements about the systems behaviour as properties that are verified by the
OBP Observation Engine. These properties expressed through property-pattern
definitions [14] are based on events (e.g. variable x changed), predicates, and
synchronous observers.

Techniques such as bounded model checking [10] (BMC) exploit the observa-
tion that in many practical settings the property verification can be done with
only a bounded reachability analysis. Hence, in the absence of a full-coverage
proof, these approaches cannot guarantee the absence of errors, but only their
presence. The usage of explicit acyclic behaviors, and the CaV approach can
be considered as the explicit-state equivalent of symbolic BMC. Moreover, as
opposed to BMC, the usage of acyclic behaviors offers more flexibility for spec-
ifying the ”bounds” of the analysis, and the context can be seen as a high-level
skeleton which drives the analysis through a complex state-space partition.

The xGDL language, introduced in this study focuses on the specification of
the verification guides. This study generalizes the CaV approach by enabling the
specification of cyclic verification guides, which releases the need of extracting
acyclic models from the environment. Moreover, as opposed to the guide specifi-
cation in the CDL language, the xGDL specifications are semantically decoupled
from the system. During verification, the xGDL specifications are synchronously
composed with the system through a labeling function.

By enabling the definition of acyclic verification guides, this study improves
the applicability of the CaV approach. Prior to the verification step the verifi-
cation guides are unrolled to a predefined bound, similarly to BMC. The main
difference stems however in the scope of the bound. For BMC the bound is global
over the system and its environment, in our approach the bound is partial, ap-
plying only to the verification guide.

3 A language for context guided reachability: xGDL

The approach proposed in this paper supposes a closed transition system as an
entry point. By definition, a closed system includes behaviours from both the
verification target and its environment. This ensures compatibility with a wide
range of verification techniques with the same entry point, independently of the
formalism used for property specification.

In addition, our approach requires a labelling function (a total and determin-
istic relation) over the closed system transitions with the co-domain in A∪ {τ},
where A is the set of observable actions involving the environment (referred later
as interactions) and where τ denotes the lack thereof.

A xGDL specification defines a language over A or a subset of A. The syn-
chronous composition of the closed system and a xGDL specification thus re-

Partially Bounded Context-Aware Verification 5

stricts the sequences of possible interactions to those accepted by the specified
language.

Section 3.1 provides the abstract syntax of xGDL, section 3.2 provides its
operational semantics through inference rules, section 3.3 explicitly defines the
compilation of a xGDL specification to a verification guide (a deterministic fi-
nite automaton, DFA), section 3.4 details how a verification guide and the closed
transition system to be verified are synchronously composed.

3.1 xGDL Abstract Syntax

A xGDL verification guide defines a language of interactions. Those are drawn
from a finite alphabet A. The syntax of xGDL is given by the following BNF-style
grammar:

⊥ | a | C;C | C�C | C‖C |
C ::= C? | C + | C ∗ | C{i, j} |

{i, j} of [C1, ..., Cn]

C ranges over the set E of terms of the xGDL language, a ranges over the
alphabet A of observable interactions, and i, j ∈ N with i ≤ j.

According to the previous grammar, an xGDL specification is one of the
following: – ⊥, the empty term; – a, an observable interaction; – C;C, a sequen-
tial composition of two terms; – C�C, a non-deterministic choice between two
terms; – C‖C, a parallel composition, by unrestricted interleaving of two terms;
– C?, an optional term – C+, an unbounded replication of a term, with at least
one occurrence; – C∗, an unbounded replication of a term, with potentially 0
occurrences; – C{i, j}, a bounded replication of the a term with at least i oc-
currences and at most j; – {i, j} of [C1, ..., Cn], possible permutations of length
at least i to at most j among a set of terms.

3.2 xGDL Operational semantics

xGDL operational semantics is defined via inference rules. The notation C
a−→ C ′

denotes a tuple (C, a,C ′) ∈ E×{A∪τ}×E , where A is the alphabet of interactions
(observable actions initiated by the closed system’s environment), τ denotes the

lack thereof and E is the set of all possible terms. If C
a−→ C ′ with a 6= τ , then C

can be translated into C ′ upon executing the interaction a. If C
τ−→ C ′, then C

and C ′ can be said to be semantically equivalent.

a ∈ A+

a
a−→ ⊥

[atom]
a ∈ A+

a;C
a−→ C

[seq1]
C1

a−→ C′1 ∧ C1 6= a

C1;C2
a−→ C′1;C2

[seq2]

C1�C2
τ−→ C1

[alt1]
C1�C2

τ−→ C2

[alt2]
C1

a1−→ C′1

C1‖C2
a1−→ C′1‖C2

[par1]

C2
a2−→ C′2

C1‖C2
a2−→ C1‖C′2

[par2]
⊥‖C τ−→ C

[par3]
C‖⊥ τ−→ C

[par4]

6 Luka Le Roux and Ciprian Teodorov

Atom, sequence, alternative and parallelism If the term is a single interaction
a, it is executed and it results in the empty term ⊥ (a

a−→ ⊥, rule atom).
If the term is a sequence of the form a;C, the interaction a is executed and

it results in the term C (a;C
a−→ C, rule seq1). If the term is a sequence of the

form C1;C2 such that C1 is not a single interaction and such that ∃(a,C ′1) ∈
{A ∪ τ} × E , C1

a−→ C ′1, then the interaction a is executed and it results in the

term C ′1;C2 (C1;C2
a−→ C ′1;C2, rule seq2).

If the term is a non-deterministic choice of the form C1�C2, it can either
result in C1 (C1�C2

τ−→ C1, rule alt1) or C2 (C1�C2
τ−→ C2, rule alt2). In both

cases, no interaction is executed.
Lastly, if the term is a parallel composition of the form C1‖C2 with

∃(a1, C ′1) ∈ {A ∪ τ} × E , C1
a1−→ C ′1 and ∃(a2, C ′2) ∈ {A ∪ τ} × E , C2

a2−→ C ′2, it

can either result in C ′1‖C2 (C1‖C2
a1−→ C ′1‖C2, rule par1) or C1‖C ′2 (C1‖C2

a2−→
C1‖C ′2, rule par2) by executing the corresponding interaction. If C1 = ⊥ or
C2 = ⊥, it results in the leftover term (rules par3 and par4).

C?
τ−→ ⊥�C

[opt]
C∗ τ−→ (C;C∗)?

[star]

C+
τ−→ C;C∗

[plus]
0 < i ≤ j

C{i, j} τ−→ C;C{i− 1, j − 1}
[rep1]

i = 0 ∧ j > 0

C{i, j} τ−→ (C;C{0, j − 1})?
[rep2]

i = j = 0

C{i, j} τ−→ ⊥
[rep3]

Replications If the term is an optional term of the form C?, it is semantically
equivalent to ⊥�C, meaning it can either result in ⊥ or C (C?

τ−→ ⊥�C, rule
opt).

If the term is an unbounded replication of the form C∗, it is semantically
equivalent to (C;C∗)? (recursive definition), meaning it results either in ⊥ or

C;C∗ (C∗ τ−→ (C;C∗)?, rule star).
If the term is an unbounded replication with at least one occurrence

of the form C+, it is semantically equivalent to C;C∗ (C+
τ−→ C;C∗, rule plus).

The bounded replication C{i, j} is defined by the rules rep1, rep2 and
rep3. The first applies as long as i > 0, decrements both i and j and ensures
at least i occurrences of C. The second applies for i = 0 ∧ j > 0, decrements j
and ensures at most j occurrences of C. The last one applies for i = j = 0 and
results in ⊥ (termination).

0 < i ≤ j ≤ n ∧ ∀k, 1 ≤ k ≤ n

{i, j} of [C1, ..., Cn]
τ−→ Ck; {i− 1, j − 1} of [C1, ..., Ck−1, Ck+1, ..., Cn]

[perm1]

0 = i < j ≤ n ∧ ∀k, 1 ≤ k ≤ n

{i, j} of [C1, ..., Cn]
τ−→ (Ck; {0, j − 1} of [C1, ..., Ck−1, Ck+1, ..., Cn])?

[perm2]

0 = i = j

{i, j} of [C1, ..., Cn]
τ−→ ⊥

[perm3]
{i, j} of []

τ−→ ⊥
[perm4]

Partially Bounded Context-Aware Verification 7

Permutations The permutation operator, as defined by the above rules, repre-
sents the set of possible sequences made of at most one occurrence of each of
the terms from the provided set [C1, ..., Cn] of size i to j (unless n < i or n < j,
as the size can not exceed n). The notation [C1, ..., Ck−1, Ck+1, ..., Cn] (as found
in rule perm2) stands for the set [C1, ..., Cn] minus the term Ck with i ≤ k ≤ j.
Rules perm3 and perm4 ensure termination in cases where j = 0 and where the
set of terms to choose from is empty, respectively.

Prefix closed semantics Defined this way, xGDL syntax and semantics match
those of regular expressions extended with parallelism and permutations. How-
ever, a xGDL specification defines the language of all possible sequences of
interactions. All prefixes of a term accepted by a xGDL specification (including
⊥) are also members of this language. Thus, unlike regular expressions, xGDL
semantics is prefix closed.

3.3 xGDL compilation

Fig. 1. The xGDL compilation flow.

A xGDL specification defines a language over the set of possible interactions
A. To ease subsequent manipulations (such as the composition with the closed
system as defined section 3.4), a xGDL specification is compiled to a practical
verification guide, a deterministic finite automaton (DFA).

The compilation flow, presented in Fig. 1, starts with a xGDL specification.
By applying the semantic rules defined section 3.2 the specification is straight-
forwardly converted to a non-deterministic finite automaton (NFA). The result-
ing NFA is then converted to a DFA. For this purpose, transitions carrying no
interactions (τ) are considered as ε-transitions and are thus removed.

Lastly, this DFA is minimised. The result represents the compiled verification
guide. The equivalence between the initial xGDL specification and the compiled
verification guide follows directly from well known results in the automaton the-
ory.

3.4 xGDL guide and closed system composition

Given a closed transition system S, a set of interactions A, a labelling function
L over A∪ {τ} and a xGDL verification guide G specified over A, the following
defines the result their composition.

8 Luka Le Roux and Ciprian Teodorov

First, some additional notations are introduced:

– G× S denotes the resulting transition system;
– G0, S0 and G0 ×0 S0 denote the initial states set of G, S and G× S;
– (g, s) denotes a composite state;

– s
a−→ s′ denotes the existence of a transition such that L(s→ s′) = a.

Intuitively G and S are seen as transition systems labelled over A ∪ {τ} (LTS).
G × S is the result of their synchronous composition with stuttering steps and
A as the vocabulary of synchronous behaviours.

The guide LTS G can be obtained through interpretation of a xGDL expres-
sion as described by the operational semantics (see section 3.2). However, in the
following, the DFA obtained after compilation (see section 3.3) is considered in-
stead. Both are equivalent for this section purpose, but the later being a minimal
representation (least possible amount of states) it leads to better exploration re-
sults (smaller state space). It also ensures no τ -transitions in G, which eases our
definitions.

The system LTS S is obtained by labelling each and every transition tS from
the system under study with L(tS) ∈ A ∪ {τ}. A system transition labelled by
a ∈ A carries the execution of the corresponding interaction. A system transition
labelled by τ denotes an internal step free of interactions.

The composition G × S is also a LTS and, as already stated, is obtained by a
synchronous composition (over A) with stuttering steps (τ). The following rules
define its initial states and transitions:

- Initial states: (g0, s0) ∈ G0 ×0 S0 ⇔ g0 ∈ G0 ∧ s0 ∈ S0;

- Stuttering steps: (g, s)
τ−→ (g′, s′) ⇔ g = g′ ∧ s τ−→ s′;

- Synchronisations: a 6= τ , (g, s)
a−→ (g′, s′) ⇔ g

a−→ g′ ∧ s a−→ s′.

Defined as such, G and S mutually constrain one another through their com-
position. The existence, in the resulting system, of a transition labelled by a 6= τ
from a state (g, s) implies the existence of transitions labelled by a from both g
and s.

However, most often in practical cases, all states from S are complete over
A. Meaning, for all a ∈ A and all s a system state, there is a transition from
s and labelled by a (possibly modulo some stutters). This is due to A denoting
possible interactions with the systems that can be expected at any time. In these
cases, S does not constrain G in G× S.

Neutral guide Given S, A and L, it is always possible to build a neutral guide 1
such that S = 1× S (where = denotes a strong bi-simulation).

This can be proven by construction of 1 as the guide with one initial state
{g0} and, for all a ∈ A, g0

a−→ g0. This particular guide follows directly from the
xGDL expression (a0�a1� ... �an−1)∗ with A = {a0, a1, ... , an−1}.

Partially Bounded Context-Aware Verification 9

Subset of interactions It is important to note that, unless otherwise specified, the
absence of references to an interaction within an xGDL specification prohibits
that interaction from happening.

In cases where the xGDL specification is intended to be defined over a subset
A′ ⊂ A of interactions, L (the labelling function) has to be filtered so that it
doesn’t label transitions by ignored interactions (in A \A′).

Let L′ be this filtered labelling function with A′ ∪ {τ} as its co-domain, for
all tS (transitions in S):

- L(tS) ∈ A′ ∪ {τ} ⇒ L′(tS) = L(tS); (inside A′ ∪ {τ})
- L(tS) ∈ A \A′ ⇒ L′(tS) = τ (outside A′ ∪ {τ})
In other words, interaction labels in A\A′ are interpreted as τ for the purpose

of the composition and thus system transitions labelled by those are allowed to
stutter (to move independently from the guide).

3.5 Partially Bounded Verification

Using a cyclic verification guide for closing the system is equivalent to the
traditional model-checking process, in which the system is closed with an arbi-
trary environment. The context-aware verification approach showed that model-
checking problems can be easily decomposed using acyclic verification guides to
significantly improve the scalability of model checking. However, CaV is limited
by the acylicity of the verification guides, which are difficult to extract and prove
complete. Bounded model checking on the other hand, is more general and can
be applied directly to model-checking problems. However in practice it is more
often used as test procedure due to the difficulty of proving the completeness
of the analysis. Based on the xGDL language, in this section, we propose a
partially-bounded verification procedure.

Fig. 2. Partially bounded verification flow

The approach, shown in Fig. 2, is similar to bounded model checking, with the
particularity that only the verification guide is bounded. The compiled xGDL
guide is unrolled to a predefined bound, through this unrolling a directed-acyclic
graph (DAG) is obtained satisfying the CaV acyclity requirement. This DAG
guide is then associated to a specification to obtain a CaV verification context.
The model-checking procedure then analyses this verification context in conjunc-
tion with the system (system in the figure). Since the DAG guide is acyclic, both
the recursive state-space decomposition and the PastFree[ze] algorithms used by
the Context-aware Verification approach, can be applied [26].

10 Luka Le Roux and Ciprian Teodorov

It should be noted that, in Fig. 2, the verification guide is unrolled prior
to the verification step. This prior unrolling can be seen as the automatic ex-
traction of an acyclic verification guide from an arbitrary environment. This
extraction step, required by the CaV approach, was previously implicitly done
by the designer during the manual specification of the acyclic verification guide.

Partially Bounded Verification and Completeness This methodology is gener-
ally not complete, in the sense that the unrolling of a system along a bounded in-
teraction scenario potentially implies that some states remain undiscovered (e.g.
the states unravelled by a longer scenario). This imposes virtually the same limi-
tation as the bounded model-checking procedures [10]. Namely, that the analysis
should be accompanied by a completeness proof showing that the bound bguide
chosen for the interaction scenario enables the unrolling of its composition with
the system to a depth at least equal to the Completeness Threshold C. More-
over, given a cyclic environment and an arbitrary system, C is an upper bound
on bguide. Hence, if the Completeness Threshold of the composition is known it
is sufficient, but not necessary, to unroll the cyclic environment model to that
depth to achieve completeness.

For the verification of safety properties the completeness threshold is given by
the reachability diameter rd (the minimum number of steps required for reaching
all reachable states) [19].

This partially bounded verification procedure effectively generalises the CaV
approach to arbitrary systems. Based on this new approach, currently we inves-
tigate the possibility to automatically compute the minimal bguide that guaran-
tees that the composition of the interaction scenario with the system reaches
the Completeness Threshold, which provides the necessary conditions for the
completeness proof.

4 Case-Study: the Landing Gear System

This section showcases xGDL on a realistic case-study from the aerospace
domain. In the process, we show that it is well suited for iterative state-space
decomposition during model-checking.

The landing gear system (LGS) specification [6] includes three gears, each
made of several physical parts. These are specified with (continuous) timed con-
straints, sensors and possible failures. Retraction and extension sequences can
be initiated, interrupted and inverted at any time. This system raises a number
of interesting issues during verification, some of which have already been subject
to studies via model-checking [29, 4, 15, 24, 26].

The focus, here, is not to illustrate how the system can be translated into an
executable model. Rather, given that the executable model is already provided,
and that the analysis does not scale, this study shows why a language like xGDL
is needed and how it can be used within a verification activity requiring several
iterations.

Partially Bounded Context-Aware Verification 11

Section 4.1 provides an overview of the LGS executable model. Section 4.2
illustrates the definition of the xGDL verification guide and how it can be de-
composed, eventually bounded, to further push the limits of the verification.

4.1 LGS Executable Model

The LGS model is composed of the system-under-study along with the capa-
bilities of its environment, both implemented using timed automatons in Fiacre
language [3].

System-under-study The LGS manages the extension and retraction of a the
landing gears. The physical part includes three landing boxes to the front, the
left, and the right of the plane. A landing box contains the gear itself as well as a
door and hydraulic cylinders. The digital part is responsible of monitoring those
physical components through sensors. If an anomaly is detected, this information
is forwarded to the cockpit through visual indicators.

A more detailed description of this case study can be found in [6]. The Fiacre
implementation of the physical and software parts matches the one proposed and
studied via the CaV approach [24, 26].

Analog Switch General Electro-Valve

Opened Closed Opened Closed

f11 f12 f21 f22
Door Electro-Valves Gear Electro-Valves

Extension Retraction Extension Retraction

Opened Closed Opened Closed Opened Closed Opened Closed

f31 f32 f41 f42 f51 f52 f61 f62
Front Left Right Front Left Right

Door Gear

f7 f8 f9 f10 f11 f12
Table 1. Possible failures and labels

Environment capabilities and system closure The pilot can interact with the
system through a handle. Switching its position induces handle events, which
enable the retraction (or extension) sequence.

In addition, a failure may occur at any time. Table 1 lists the possible fail-
ures and labels them for future references. Couples (fn1

, fn2
) are exclusive, for

example a door may not be blocked in two different positions.
The environment is modelled as one single state automaton in Fiacre. Each of

its transitions models a capability, meaning one for the handling of the lever and
one per possible failure. This automaton closes the system with its environment
capabilities and is later referred as the system closure automaton.

12 Luka Le Roux and Ciprian Teodorov

Assumptions and Restrictions The analysis is performed under the following
assumptions: a) the software modules are assumed failure-free. b) the sensors,
and the interconnect wires are assumed failure-free. c) the failures are assumed
permanent, such that if an equipment becomes blocked it remains blocked for-
ever.

Scaling of the analysis The resulting state space is much too large2 for explicit
model-checking to scale as is. To address this issue, one can use the fact that at
most three failures may happen in one execution. If the verification holds for all
the valid subsets of three failures, then it holds for the initial problem as well
[15]. Taking into account exclusive failures, there is a total of 720 valid subsets
and, thus, that many verification tasks.

This can be achieved by various means. Each task can have its own model
of the system with different, restricted closure automatons. Parameters can be
added to the system and so on. However, these approaches raise new issues re-
garding the production, soundness, maintainability and further analysis of the
various verification tasks. Next section, addresses these issues using the xGDL
formalism for the specification of verification guides, which facilitates the decom-
position of the state-space while providing the basis for proving its completeness.
Moreover, when coupled with the partially-bounded verification procedure, the
acyclicity requirement is met, enabling the use of the CaV-specific algorithms.

4.2 xGDL verification guides

Specifying the verification guide. To apply our approach, an interaction
alphabet and a labelling function have to be defined over the executable model
introduced in the previous section.

Interaction Alphabet For this case study, the finite set of interactions consid-
ered are inferred from the environment capabilities as described section 4.1. As
such:

A = {handle, f11 , f12 , ..., f61 , f62 , f7, ..., f12}

Labelling function A transition from a system state to another involves zero or
one Fiacre transition from the single state automaton modelling the environment
capabilities. If present, the labelling function returns the corresponding label. If
absent it returns τ , denoting the absence of environment interaction.

2 If the system is restricted to failure-free behaviours, it unfolds 3E+5 states. If re-
stricted to one specific failure, 128Gb of memory is not enough [24, 26] (potentially
1E+9 states). For the considered scope (three different failures), those figures hint
for a state space several orders of magnitude higher than 1E+10.

Partially Bounded Context-Aware Verification 13

xGDL guide expressions With the labelling function and its range being now
defined, it is possible to write the xGDL expressions. The following introduces
some useful examples:

name xGDL
- Handles: Gpilot = handle ∗
- One exclusive failure: 1 ≤ n ≤ 6, Fn = fn1

�fn2

- One non-exclusive failure: 7 ≤ n ≤ 12, Fn = fn
- At most three failures: Fall = {0, 3} of [F1, ..., F12]
- Considered scope: Gscope = Gpilot ‖ Fall

Gpilot is a sequence of any number of handle interactions. The composition
of this guide with the system, as defined in section 3.4, induces an analysis
restricted to the failure free behaviours (since the failures are not included).

Fn matches one failure injection. For n ≤ 6, it references a couple of exclusive
failures in an alternative so that only one or the other may happen.

Fall is a sequence of zero to three failures. The permutation operator is used
to ensure uniqueness (a given failure cannot happen twice).

Gscope is the parallel composition of Gpilot and Fall. Gscope × S covers
all the possible behaviours minus those outside the specification scope [6] (i.e.
at most three unique failures and excludes impossible combinations). In other
words, Gscope is not strictly neutral to the composition as it is limited to one
of each failure and no more than three different ones. However, it precisely and
exhaustively captures the system closure required by the specification.

Splitting the analysis. With the xGDL expressions introduced above,
Gscope × S defines the entire state space, target of the verification. As men-
tioned toward the end of section 4.1, its size is prohibitive for the analysis and
needs to be split into smaller, specialised verification tasks.

For this purpose, xGDL can be used to express those through specialised
guides. Each of the 720 subsets of three different failures {fi, fj , fk} (with
fi 6= fj 6= fk) lead to specific xGDL guides:

handle ∗ ‖ {0, 3} of [fi, fj , fk]

Non intrusive. Using this approach, the system executable model (S) is an
invariant of all the verification tasks, including the initial one (Gscope × S).
This approach does not require custom environment closures nor the modifica-
tion (parameterization) of the system model.

Thus, one can focus on the languages recognised by the various xGDL
expressions to provide a soundness proof of these new verification tasks.
To prove that the language of the initial guide is equal to the union of the lan-
guages of the guides generated after the splitting process is enough for safety
requirements (reachability). For the LGS case study, this is expressed through
the theorem 1 and its proof.

14 Luka Le Roux and Ciprian Teodorov

Theorem 1. language(Gscope) = ∪719id=0 language(G3
id)

Where G3
id = handle ∗ ‖ {0, 3} of F 3

id with F 3
0 to F 3

719 the 720 valid subsets
of three failures.

Proof. By successive rewriting of the equality right hand size:
0: ∪719

id=0 language(G3
id)

1: language(G3
0 � ... � G3

719)
2: language((handle ∗ ‖ {0, 3} of F 3

0) � ... � (handle ∗ ‖ {0, 3} of F 3
7 19))

3: language(handle ∗ ‖ ({0, 3} of F 3
0 � ... � {0, 3} of F 3

719))
4: language(handle ∗ ‖ {0, 3} of Fall)
5: language(Gscope)
Step 0 to 1: the union of xGDL expressions languages is equal to the language of an

alternative over those expressions. Step 1 to 2: unfolding of all the G3
i . Step 2 to 3: the

parallel operator is distributive over the alternative (i.e. (A‖B)�(A‖C) = A‖(B�C))

Step 3 to 4: the alternative over the length three permutations of F 3
id subsets is equal

to Fall (both strictly recognise all the valid, length three permutations). Step 4 to 5:

per definition of Gscope. QED.

Further refinements and bounding the verification. Model-checking of any
of the 720 guides with three specific failures still did not scale. xGDL offers the pos-
sibility to further refine the verification guides and to partially bound the verification
tasks in the guide specifications.

Failure f11 f12 f21 f22 f31 f32 f41 f41 f51 f52 f61 f62 f7, f8, f9 f10, f11, f12
Bound 16 16 18 17 20 20 18 20 20 X 18 X 20 20

Table 2. Unrolling bounds required for completeness

Similarly to the guide with up to three failures, a guide including exactly one failure
(handle ∗ ‖ {1, 1} of [F1, ..., F12]) can be split into 18 guides:

G1
i = handle ∗ ‖ fi

Bounding those 18 verification tasks (as shown in section 3.5) arbitrarily to 30
interactions allows the analysis to successfully terminate for 16 of these. To prove
completeness, an option is to perform an analysis of the induced clusters of states, as
discussed in [26]. In this case, a cyclic behaviour is detected after 16 to 20 interactions
depending on the considered failure. Table 2 shows, for each failure, the bound required
for completeness inferred from this post-mortem analysis.

For failures f52 and f62 (extension and retraction gear electro-valves blocked in closed
position), further refinement is still needed. Since G1

i has exactly one interaction on
the right hand side of the parallel operator, it is equivalent to the sequence:

G1
i = handle ∗ ; fi ; handle∗

Partially Bounded Context-Aware Verification 15

Additionally, for handle∗, bounding the analysis and inferring the bound required
for completeness shows 7 handles are enough to consider before the eventual failure.
This can be captured as:

G1
i ⇔ handle{0, 7} ; fi ; handle∗

This last form can then be decomposed again in 16 different guides of the form
handle{n, n} ; fi ; handle∗ with 0 ≤ n ≤ 7 and fi ∈ {f52 , f62}. For both failures,
the analysis bounded to 30 interactions scales for 0 ≤ n ≤ 4 but would still require
further refinement for n > 4.

The approach proposed in this study allows the use complementary analy-
sis techniques on the same executable model and its properties. From this perspective,
typically several directions are possible, such as: 1. further abstracting the model for
symbolic model-checking; 2. exploit symmetry reduction or partial-order reduction.

Producing the various verification tasks is done without altering the formal spec-
ification of the initial challenge. Moreover, xGDL enables to dispatch the verification
tasks to different, complementary tools.

5 Conclusion and Perspectives

This paper presented a guide description language along with a partially-bounded
context-aware verification procedure. Through the xGDL specifications the acyclicity
requirement imposed by the CaV methodology is lifted, which bridges the gap between
the environment model and the verification guides. These cyclic verification guides
are unrolled to a predefined depth before their composition with the system, which
enables the use of the CaV state-space decomposition algorithms. The approach was
illustrated on a landing gear system case study. The system/environment interactions
where formally captured using one xGDL guide. Relying on this guide, the verification
problem was decomposed in 720 sub-problems. This decomposition is accompanied by
a coverage proof realised by rewriting of the guide structure. Most of the one-failure
cases (16 out of 18) where discharged using the partially-bounded verification pro-
cedure, which used in conjunction with the PastFree algorithm of CaV provided the
completeness proof, by bi-simulation on the clusters induced by the guide. The two fail-
ing guides, were further rewritten and decomposed (structurally), and the new form
was partially-bounded (syntactically) using the completeness threshold of the failure
free analysis. Currently, we are investigating an online verification procedure, which
unrolls the guide during the verification while at the same time enabling the recursive
state-space decomposition.

16 Luka Le Roux and Ciprian Teodorov

References

1. Barnat, J., Brim, L., Simecek, P.: Cluster-based i/o-efficient ltl model checking.
In: Proceedings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering. pp. 635–639. ASE ’09, IEEE Computer Society, Washington,
DC, USA (2009). https://doi.org/10.1109/ASE.2009.32

2. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: Uppaal — a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) Hybrid Systems III. pp. 232–243. Springer Berlin Heidelberg,
Berlin, Heidelberg (1996). https://doi.org/10.1007/BFb0020949

3. Berthomieu, B., Bodeveix, J.P., Farail, P., Filali, M., Garavel, H., Gaufillet, P.,
Lang, F., Vernadat, F.: Fiacre: an Intermediate Language for Model Verification
in the Topcased Environment. In: European Congress on Embedded Real-Time
Software (ERTS). SEE, Toulouse, France (Jan 2008), https://hal.inria.fr/inria-
00262442

4. Berthomieu, B., Dal Zilio, S., Fronc, L.: Model-checking real-time properties of
an aircraft landing gear system using fiacre. In: Boniol, F., Wiels, V., Ait Ameur,
Y., Schewe, K.D. (eds.) ABZ 2014: The Landing Gear Case Study. pp. 110–125.
Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-
319-07512-9 8

5. Boniol, F., Dhaussy, P., Le Roux, L., Roger, J.C.: Model-Based Analysis. In: Em-
bedded systems, Analysis and Modeling with SysML, UML and AADL, pp. 157–
184. Wiley (May 2013), https://hal.archives-ouvertes.fr/hal-00843139

6. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F.,
Wiels, V., Ait Ameur, Y., Schewe, K.D. (eds.) ABZ 2014: The Landing
Gear Case Study. pp. 1–18. Springer International Publishing, Cham (2014).
https://doi.org/10.1007/978-3-319-07512-9 1

7. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic model check-
ing: 1020 states and beyond. Information and Computation 98(2), 142–170 (1992).
https://doi.org/10.1016/0890-5401(92)90017-A

8. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (Apr 1986). https://doi.org/10.1145/5397.5399

9. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design 9(1), 77–104 (Aug 1996).
https://doi.org/10.1007/BF00625969

10. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using sat-
isfiability solving. Formal Methods in System Design 19(1), 7–34 (Jul 2001).
https://doi.org/10.1023/A:1011276507260

11. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skele-
tons using branching time temporal logic. In: Kozen, D. (ed.) Logics of
Programs. pp. 52–71. Springer Berlin Heidelberg, Berlin, Heidelberg (1982).
https://doi.org/10.1007/BFb0025774

12. Dhaussy, P., Boniol, F., Landel, E.: Using context descriptions and property defi-
nition patterns for software formal verification. In: Proceedings of the 2008 IEEE
International Conference on Software Testing Verification and Validation Work-
shop. pp. 89–96. ICSTW ’08, IEEE Computer Society, Washington, DC, USA
(2008). https://doi.org/10.1109/ICSTW.2008.52

13. Dhaussy, P., Boniol, F., Roger, J.C., Le Roux, L.: Improving Model Checking with
Context Modelling. Advances in Software Engineering 2012, ID 547157, 13 pages
(Oct 2012). https://doi.org/10.1155/2012/547157

Partially Bounded Context-Aware Verification 17

14. Dhaussy, P., Pillain, P.Y., Creff, S., Raji, A., Le Traon, Y., Baudry, B.: Eval-
uating context descriptions and property definition patterns for software formal
validation. In: Schürr, A., Selic, B. (eds.) Model Driven Engineering Languages
and Systems. pp. 438–452. Springer Berlin Heidelberg, Berlin, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04425-0 34

15. Dhaussy, P., Teodorov, C.: Context-aware verification of a landing gear system. In:
Boniol, F., Wiels, V., Ait Ameur, Y., Schewe, K.D. (eds.) ABZ 2014: The Land-
ing Gear Case Study. pp. 52–65. Springer International Publishing, Cham (2014).
https://doi.org/10.1007/978-3-319-07512-9 4

16. Dumas, X., Dhaussy, P., Boniol, F., Bonnafous, E.: Application of partial-order
methods for the verification of closed-loop sdl systems. In: Proceedings of the 2011
ACM Symposium on Applied Computing. pp. 1666–1673. SAC ’11, ACM, New
York, NY, USA (2011). https://doi.org/10.1145/1982185.1982533

17. Godefroid, P.: The Ulg partial-order package for SPIN. In: SPIN Workshop.
Montréal, Quebec (1995)

18. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(May 1997). https://doi.org/10.1109/32.588521

19. Kroening, D., Strichman, O.: Efficient computation of recurrence diameters. In:
Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) Verification, Model
Checking, and Abstract Interpretation. pp. 298–309. Springer Berlin Heidelberg,
Berlin, Heidelberg (2003). https://doi.org/10.1007/3-540-36384-X 24

20. Parizek, P., Plasil, F.: Specification and generation of environment for model check-
ing of software components. Electr. Notes Theor. Comput. Sci. 176(2), 143–154
(2007). https://doi.org/10.1016/j.entcs.2006.02.036

21. Park, S., Kwon, G.: Avoidance of state explosion using dependency analysis in
model checking control flow model. In: Gavrilova, M.L., Gervasi, O., Kumar, V.,
Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) Computational Sci-
ence and Its Applications - ICCSA 2006. pp. 905–911. Springer Berlin Heidelberg,
Berlin, Heidelberg (2006). https://doi.org/10.1007/11751649 9

22. Peled, D.: Combining partial order reductions with on-the-fly model-
checking. Formal Methods in System Design 8(1), 39–64 (Jan 1996).
https://doi.org/10.1007/BF00121262

23. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in CE-
SAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) International Symposium on
Programming. pp. 337–351. Springer Berlin Heidelberg, Berlin, Heidelberg (1982).
https://doi.org/10.1007/3-540-11494-7 22

24. Teodorov, C., Dhaussy, P., Le Roux, L.: Environment-driven reachability for timed
systems. International Journal on Software Tools for Technology Transfer 19(2),
229–245 (Apr 2017). https://doi.org/10.1007/s10009-015-0401-2

25. Teodorov, C., Le Roux, L., Dhaussy, P.: Context-aware verification of a cruise-
control system. In: Ait Ameur, Y., Bellatreche, L., Papadopoulos, G.A. (eds.)
Model and Data Engineering. pp. 53–64. Springer International Publishing, Cham
(2014). https://doi.org/10.1007/978-3-319-11587-0 7

26. Teodorov, C., Le Roux, L., Drey, Z., Dhaussy, P.: Past-free[ze] reachability anal-
ysis: Reaching further with dag-directed exhaustive state-space analysis. Softw.
Test. Verif. Reliab. 26(7), 516–542 (Nov 2016). https://doi.org/10.1002/stvr.1611

27. Tkachuk, O., Dwyer, M.B.: Environment generation for validating event-driven
software using model checking. IET Software 4(3), 194–209 (June 2010).
https://doi.org/10.1049/iet-sen.2009.0017

18 Luka Le Roux and Ciprian Teodorov

28. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) Advances in Petri Nets 1990. pp. 491–515. Springer Berlin Heidelberg, Berlin,
Heidelberg (1991). https://doi.org/10.1007/3-540-53863-1 36

29. Wiels, V., Ledinot, E., Belin, E., Dassault, M.: Experiences in using model check-
ing to verify real time properties of a landing gear control system. In: Embedded
Real-Time Systems (ERTS). Toulouse, France (Jan 2006)

30. Yatake, K., Aoki, T.: Automatic generation of model checking scripts based on
environment modeling. In: Model Checking Software - 17th International SPIN
Workshop, Enschede, The Netherlands, September 27-29, 2010. Proceedings. pp.
58–75 (2010). https://doi.org/10.1007/978-3-642-16164-3 5

31. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifica-
tions. In: Proceedings of the 10th IFIP WG 10.5 Advanced Research
Working Conference on Correct Hardware Design and Verification Meth-
ods. pp. 54–66. CHARME ’99, Springer-Verlag, London, UK, UK (1999),
http://dl.acm.org/citation.cfm?id=646704.702012

