
Object-Oriented Design Pattern for DSL Program Monitoring

Zoé Drey
Lab-STICC, ENSTA Bretagne

Brest, France
zoe.drey@ensta-bretagne.fr

Ciprian Teodorov
Lab-STICC, ENSTA Bretagne

Brest, France
ciprian.teodorov@ensta-bretagne.fr

Abstract
To ease domain-specific language (DSL) development, a
range of language workbenches have been created, which
provide language design facilities and programming tools,
like editors and validators. In spite of these developments,
there is a perceived lack of tool support for execution moni-
toring, which is the basic block for program validation and
maintenance. To partially address this issue some language
workbenches offer ad-hoc solutions for DSL debugging, but
lack support for other monitoring features. In the literature, a
number of domain-specific monitoring tools have been pro-
posed. However, there is no clear way for integrating these
developments in existing language workbenches.

This paper presents ten requirements needed for creating a
modular and composable DSL monitoring infrastructure and
proposes an object-oriented design pattern for DSL program
monitoring. This pattern provides a practical answer to the
problem of interfacing the runtime of a DSL with concrete
domain-specific monitoring tools. To show the practicability
of our approach, we add monitoring support to a simple
lambda calculus, without changing the standard interpreter.
The ease of integrating monitoring tools is shown through the
development of a tracer and the integration of an off-the-shelf
domain-specific profiler.

Categories and Subject Descriptors D.2.5 [Software Engi-
neering]: Testing and Debugging

Keywords domain-specific language, language workbench,
execution monitoring

1. Introduction
To reduce the accidental complexity in the development of
software-intensive systems, the sofware engineering commu-
nity promotes the use of domain-specific languages (DSL).

DSLs bridge the gap between the conceptual models manip-
ulated by the domain-experts – the problem domain – and
the computation-oriented view provided by general purpose
languages (GPL) – the solution domain. While DSL devel-
opment is hard, principally due to the knowledge-duality
required (domain-specific and language engineering com-
petencies) [22], during the last decades a large number of
tools have been created to simplify the DSL implementation
process. These developments are principally based on the
identification of language implementation patterns, which
are generalized and integrated in fully-fledged DSL design
toolkits, known as language workbenches [7].

Most of the existing language workbenches provide lan-
guage design facilities (syntax and semantics) and the gen-
eration of dedicated programming infrastructures consisting
of editors, validators and testing facilities [7]. However, in
spite of these impressive developments, there is a perceived
lack of tool support for DSL program validation and mainte-
nance [18]. The lack of tool support for these two develop-
ment phases induces a high cost after DSL deployment. In
GPLs, tools like interactive debuggers [21] and profilers [10]
ease these tasks by providing a view on the dynamic program
execution. Recent developments partially address these issues
by proposing domain-specific tools [3, 27] and by ad-hoc inte-
gration of debugging support in language workbenches [1, 7].

The development of domain-specific debuggers [3] or pro-
filers [27] greatly improves DSL programming environments,
and offers reusable solutions to two of the most important
tools for program diagnosis. However powerful and reusable,
it is not always clear how these tools can be meaningfully in-
tegrated with the runtime of arbritrary DSL implementations.
As a result, the integration of debugging tools in language
workbenches lacks modularity and is not compositional with
other monitoring tools.

The core underlying mechanism enabling both debuggers
and profilers is the possibility to observe the continuous
evolution of a program during its execution, which is known
in the literature as program monitoring [23]. For the purpose
of this study we define DSL monitoring as the process of
observing the execution of a program expressed in a DSL.
This definition implies that an external party (external to the
execution runtime of a particular DSL) can gain access to the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SLE’16, October 31 – November 1, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4447-0/16/10...$15.00

http://dx.doi.org/10.1145/2997364.2997373

70

runtime data-structures and inspect in a meaningful way the
state of the program at discrete moments coherent with the
DSL semantics.

From a theoretical point of view, the integration of generic
monitoring facilities in language runtimes was studied by
Kishon et al. [17]. In this approach, overviewed in Sec. 3,
the authors propose to capture the language semantics in a
continuation-passing-style which is extended with a monitor-
ing operator. Through this operator the language semantics is
parameterized with the denotational semantics of a monitor,
for instance a profiler, a tracer, etc.

The main contribution of this paper, presented in Sec. 4,
is an object-oriented DSL monitoring pattern, inspired by the
formal framework of Kishon et al. [17]. This pattern provides
a practical answer to the problem of interfacing the runtime
of a DSL with concrete domain-specific monitoring tools.
Such interfacing is a key enabler for effectively capitalizing
on the progress made on the tool creation side, by fostering
a maximum level of reuse. To achieve this, in Sec. 2 we
define ten high-level requirements that should be satisfied by
such an interface. These requirements range from monitoring
completeness, non-interference, and composability to ease of
integration, and portability.

The practicability of our approach is shown, in Sec. 5, by
applying the monitoring pattern to a simple lambda calculus
runtime. The monitoring infrastructure built by applying the
design pattern can be easily integrated with existing tools,
which is shown through the integration of DSProfile, an
external profiler tool.

2. Requirements for DSL Monitoring
Program monitoring was largely studied and popularized, in
the context of GPLs, through tools like interactive debug-
gers [21] and profilers [10]. To better characterize the moni-
toring problem, in this section we introduce ten requirements
that should be satisfied by a DSL monitoring infrastructure.

Req 1: Completeness. The completeness requirement
implies that all aspects that have an interpretation on the
source language can be stated and their occurrence detected.
To be complete a monitoring infrastructure should provide
the means for fine grained observation of the interpretation
of each language construct. To ensure the correctness of such
observations the language runtime should provide a consistent
view of the execution state before and after the execution of
atomic language constructs.

Req 2: Non-interference. The monitoring infrastructure
should not interfere with the DSL semantics: guaranteeing
that monitoring does not change the original DSL semantics
is primordial for establishing correct causal relations between
the source of an error and its effect on the program runtime.
To ease the validation of diagnosis hypotheses, the monitoring
tools might break this requirement at early development
stages (e.g., the modification of the value of a variable during
a debug session), as motivated in Req 10.

Req 3: Genericity. It is impossible to foresee all proper-
ties (or program information) to check [14] and all monitor-
ing tools needed for monitoring arbitrary DSL programs: a
monitoring approach should be evolvable according to new
properties or monitoring requirements. Therefore, monitoring
systems must provide genericity in the sense that a monitor-
ing infrastructure should be evolvable as needed, enabling
new tools to be created independently of a specific language.

Req 4: Composability. The composability requirement
can be seen as a consequence of the genericity requirement
that fosters a high-level of reuse. To provide composability,
the monitoring infrastructure should enable to compose
monitor information, to execute multiple monitors without
interference, and to create dependencies between monitors
(e.g., monitor the monitor).

Req 5: Unanticipated monitoring. For a DSL targeting
long-running systems and live programming environments,
the monitoring infrastructure should be pluggable at runtime.
Through such a functionality the monitoring support could
be added and removed at runtime without stopping the
application. To do so, the DSL designer should further
provide the means for interpreting on-the-fly the runtime
state of the program from its source code viewpoint (e.g., with
support for monitoring meta-data, like debugging symbols).

Req 6: Portability. In the context of DSL design, the mon-
itoring infrastructure should be easily portable to different
implementation languages or language workbenches. More-
over, the monitoring infrastructure should limit the usage of
reflection facilities available in the host language. This would
enable the portability to object-oriented languages having
limited reflection capabilities.

Req 7: DSL runtime integration. It should be easy to
integrate the monitoring infrastructure with existing DSL
runtimes. Ideally the integration of monitoring support should
not impose changing the DSL runtime.

Req 8: Tool Integration. The monitoring infrastructure
should facilitate the integration of existing domains-specific
monitoring tools, like dsprofile [27], MetaSpy [25], or Mold-
able Debugger [3]. By satisfying this requirement, a monitor-
ing infrastructure enables a maximum level of reuse while
letting the DSL designer focus on the creation of the DSL.

Req 9: Minimize the Gap The monitoring tools should
use a monitoring language similar to the source language.
Since the runtime data structures manipulated by the monitor
are those of the source language, making the two languages
similar has a double advantage: it renders the monitoring
language easier to comprehend, and facilitates the implemen-
tation through reuse. To facilitate the development of such
monitoring tools, the monitoring infrastructure could pro-
vide generic means for querying the runtime state of a DSL
program.

Req 10: Break the Rules At development time, the
monitoring tools could provide the possibility to implement
facilities not available in the source language. For instance, a

71

monitor may require access to variables that are not accessible
by the scope rules of a language (i.e., encapsulated or private
variables), it may require access to the invocation chain, or
it may require the possibility to change the shape of the
running program (e.g., modify the AST). The monitoring
infrastructure might provide the means for achieving these
functionalities. However, it should be possible to disable these
features to guarantee non-interference and security when
monitoring critical applications.

This set of requirements is by no means exhaustive, how-
ever, it already poses a range of challenges that should be
addressed when creating a DSL monitoring infrastructure. A
large number of research efforts have been dedicated to the
problem of language monitoring, however, to the best of our
knowledge none of the solutions proposed in the literature
satisfies all the requirements presented. Amongst the existing
approaches, the monitoring semantics of Kishon et al. [17]
directly addresses some of these requirements. However, this
approach requires the DSL semantics to be specified in a
continuation-passing style which makes the integration with
existing language runtimes difficult (Req 7), it is not eas-
ily portable to an object-oriented programming environment
(Req 6), does not have support for unanticipated monitoring
(Req 5), and while it formally guarantees non-interference
it does not enable to break the rules (Req 10). Moreover,
while the approach enables the composition of monitors, the
monitoring annotations should be disjoint, which hinders
the independent development and the integration of existing
monitoring tools (Req 8). The object-oriented DSL monitor-
ing pattern presented in this study is inspired by the Kishon
monitoring semantics [17] and strives to address all the re-
quirements introduced in this section. However, we focus
principally on the first eight requirements, which have the
biggest impact on the design of a monitoring infrastructure.
The last two requirements impact more the user interface of
monitoring tools than the monitoring infrastructure, and are
thus left for future work.

3. Background: Monitoring Semantics
Our proposal stems from the original work of Kishon, Hu-
dak and Consel [17]. They defined a formal methodology
for specifying and implementing execution monitors for a
given language. Specifically, they proposed a “monitoring
semantics” as a generic semantic model for defining program
execution monitors. The approach consists of defining the
semantics of a given execution monitor, which is then used
as a parameter of the standard semantics of a programming
language.

3.1 Overview of the Framework
The specification of the semantics classically consists of three
parts: the abstract syntax (e.g., BNF rules), the semantic
algebras (the semantic domains and their operations, that can
be seen as a representation of the internal structure of the

program, typically including a representation of the memory),
and the valuation functions. These functions map syntactic
terms to elements of the language’s semantic domains that
represent the meaning of the program.

Fig. 1 sketches the relationships of the entities involved
in Kishon’s monitoring framework: given a standard inter-
preter written in continuation-passing style, and a monitor
specification specifying how monitoring information (called
monitoring state) is computed, the monitoring semantics de-
fine a composition operator that weaves the two semantics to
yield a monitoring interpreter.

Evaluator family

Standard interpreter

Monitoring interpreter

Monitor specification

Composition operatorProgram
and input

input output
includes the specification of monitoring state

+
=

Monitoring answer

Standard answer

Monitoring state

Figure 1. Entities of the monitoring semantics

In the remainder of the section, we overview these three
parts. The reader is referred to the original article [17] for a
thorough description of the framework.

3.2 The Standard Interpreter
The standard interpreter is assumed to be written with valua-
tion functionals and in continuation-passing style.

Valuations functions as fixpoints One of the key points of
the framework is that the mapping of syntactic terms to their
meaning is defined as fixpoints of valuation functionals. A
functional takes a function f as its parameter, and returns a
function. The valuation functions that perform the evaluation
of a syntactic term are the fixpoints of these functionals. The
“inheritance” of the behavior of the valuation function is then
done on the valuation functional and propagated over the
recursive calls of its f parameter function.

Continuation-passing style To capture the control flow
of the evaluation, the language to be monitored is defined
using continuation-passing style semantics [8]. Through
this approach, besides capturing the computation itself, the
evaluation order is made explicit as a parameter of the
valuation function (i.e., a function expressing the “rest of
the computation”). The continuation parameter guides the
ordering of monitor activity. Specifically, a continuation type
has the form Kont = IVal→ Answer, where Answer is a final
answer corresponding to the program meaning.

The parameters of a valuation function are: (a) the syn-
tactic term (typed as SynTerm); (b) the semantic arguments,
which are elements of the language’s semantic domains
(typed as SemDom); and (c) a continuation of type Kont. The
corresponding valuation functional has the signature Gi =
Ti→ Ti where Ti = SynTerm→ SemDom→ Kont→ Answer.

The initial value of the continuation parameter is a func-
tion that may perform some final processing on the result
corresponding to the term’s meaning to produce a final

72

answer. The meaning of a syntactic term synTerm using
its functional Gi would be given by a call of the shape
“(fix Gi) synTerm initSemArgs (λv → finalProc v)” where
initSemArgs corresponds to the initial state of the program,
and finalProc a final processing function on the term’s mean-
ing (i.e., on the final result).

3.3 The Monitor Specification
The semantics of a monitor is defined in the same three-fold
methodology as the target language: abstract syntax, semantic
algebras, and valuation functions. The abstract syntax of the
monitor specifies an annotation on a syntactic term. This
annotation specifies the shape of the monitoring information
to be provided. The semantic algebras define the domain of
monitoring states (or MS) and its operations. Monitoring
states capture information on intermediate program states.
The valuation functions correspond to a pair of monitoring
functions (for pre- and post- monitoring), one pair for each
valuation function defined for a kind of syntactic term.

The pre (resp. post) function gathers information before
(resp. after) evaluation and updates the current monitoring
state. The post function additionally takes the produced
intermediate value as its argument. Their signatures are:
pre : Ann→ SynTerm→ SemDom→MS→MS
post : Ann→ SynTerm→ SemDom→ IVal→MS→ MS,
where Ann refers to (the type of) an annotation, SynTerm
to an annotated syntactic term, SemDom to the arguments
from the domains of the standard semantics, and IVal to the
intermediate value computed by a valuation function.

3.4 The Composition: Monitoring Interpreter
The standard semantics is then enhanced to yield a param-
eterized monitoring semantics, which can be instantiated
with a monitor specification to produce a concrete monitor-
ing semantics. Firstly, the domain of monitoring answers
(MonitoringAns) is defined, extending the answer domain in
the language standard semantics as MonitoringAns = MS→
(Answer × MS).

Secondly, the valuation functionals of the standard seman-
tics are slightly adapted to integrate the domain of monitoring
states: the final answer becomes a monitoring answer, and
the continuation domain is adapted accordingly. A valuation
functional of the monitoring semantics has the signature Gi =
T i → T i where T i = (Annotated) SynTerm→ SemDom→
MonKont→ MonitoringAns and where MonKont refers to
a continuation now returning a monitoring answer, and the
syntactic term is provided with an optional annotation. These
type changes specialize the corresponding original generic
types.

Thirdly, the monitoring valuation functional wraps the
standard valuation functional, using the pre and post moni-
toring functions. Consider a valuation function (valFun), a
syntactic term optionally annotated with a (synTerma), se-
mantic arguments (semArgs) and a monitoring continuation

(monKont); the behavior of Gi is outlined as follows:
Gi valFun synTerma semArgs monKont =

Given a pair of monitoring functions pre and post,
partially applied, and a new continuation:

preProcessing : MS→MS = pre a synTerm semArgs kont
postProcessing v : MS→MS = post a synTerm semArgs v
(where v ∈ IVal)
newKont value = postProcessing (monKont value).
The behavior of Gi consists of:

1. First, applying preProcessing to the current monitoring
state (its initial value is given in the initial monitoring
continuation), returning an updated monitoring state.

2. Second, applying the valuation function valFun to the
new continuation newKont; this amounts to evaluating
the syntactic term. Each intermediate value produced by
the evaluation of a syntactic term is applied the postPro-
cessing function encapsulated in newKont, returning an
updated monitoring state.

If the syntactic term is not annotated, then the standard
Gi is applied to the parameters. The result of applying Gi
on a program is the original answer together with a final
monitoring state.

3.5 Limitations of the Monitoring Semantics
Kishon et al. formal framework, also referred in the following
as Kishon’s monitoring semantics, thoroughly leverages
the mechanisms provided by the functional paradigm. In
particular, the semantics are in continuation-passing style,
and the fixpoints of functionals serve as an inheritance
mechanism. Furthermore, because it is close to the notation
of a formal semantics, a functional implementation of it is
direct.

However, a fortiori in a non-functional setting (i.e., object-
oriented), expressing an operation in continuation-passing
style (CPS) is not always adapted or easy to grasp: given
an existing, direct semantics (or a definitional interpreter),
transforming it into CPS can be a difficult task (though
advantageous in some situations) [15]. Moreover, in object-
oriented practice, the implementation of a language semantics
is based either on the interpreter pattern (capturing the
direct semantics along the AST) or on a double-dispatch
generalization, known as the visitor pattern, which decouples
the semantics from the syntax definition.

Nevertheless, we consider the concepts introduced by
Kishon et al. [17] foundational for the definition of moni-
toring infrastructures. As a result, the object-oriented design
pattern for monitoring, presented in Section 4, embodies
the aforementioned functional concepts in a classical object-
oriented style. As a preliminary, we first overview how the
three key functional concepts can be comprehended from an
object-oriented viewpoint.

73

3.6 Object-Oriented Viewpoint of Functional Concepts
This section introduces an object-oriented viewpoint on three
functional concepts needed by Kishon’s framework.

Fixpoints and inheritance. The technique of fixpoints
has been used to define inheritance in object-oriented lan-
guages [5, 24]. Specifically, a class is modeled as a functional
(also called a generator), and inheritance is modeled as the ap-
plication of a wrapper application on functionals, yielding a
new functional. A wrapper application consists of combining
a wrapper operation that defines methods to be modified or
replaced, and the original functional (modeling the original
class), yielding a new functional, modeling the inherited
class.

Instrumentation of the control flow. In a program written
in continuation-passing style, the continuation argument
is used to capture the order of evaluation and its initial
value can be set to do some processing on the final result,
yielding a final answer. In Kishon’s monitoring semantics,
the continuation is modified to add pre- and post- processing
treatment around the evaluation of a term. Furthermore, the
final answer is enhanced to hold a monitor state, to produce a
monitoring interpreter (or semantics). In an object-oriented
language, a traditional way to define interpreters is to use
dedicated patterns, such as the visitor pattern, which traverse
the syntactic terms (i.e., the abstract syntax tree or AST) of
a program. In such a setting, the order of evaluation is made
explicit by the (sequential) order of the accept calls on each
subpart of a syntactic term. The final result can be further
processed in the main calling program.

Function parameters and instance variables. The repre-
sentation of function parameters, in an object-oriented con-
text, depends on the nature of these parameters: they can
either be parameters of the methods or instance variables of
the classes that contain these methods. To distinguish local
from global variables, the analysis proposed by Schmidt [26]
can be applied. Proof of correctness is though out of this
paper’s scope.

4. DSL Program Monitoring: The Pattern
In this section, we present our main contribution: an object-
oriented design pattern for DSL program monitoring. This
pattern offers a principled approach for the integration of
monitoring tools with DSL runtimes. The presentation of
the pattern relies on a visitor-based implementation of an
interpreter encoding the standard semantics of the DSL.
Nevertheless, this pattern can be easily adapted to integrate
with other techniques for implementing interpreters, such as
the interpreter pattern, or switch-based dispatch.

From a high-level point of view, executing a computer
program translates to traversing, in a predefined order, an
abstract syntax tree (AST) representing the program source
code. The valuation function of the language semantics
associated to each AST element is executed and the collected

Figure 2. Two traversals of “3*(5+4)” in depth-first order
results are passed on to be used during the evaluation of
future elements. Fig.2(a) shows such a traversal over an
AST representing the 3*(5+4) expression. When the traversal
encounters the + node, it proceeds to evaluating the associated
valuation function, which computes the addition on the results
of evaluating the 5 and 4 literals and returns the result.

To weave the monitoring aspect into the program execu-
tion, the monitoring semantics, presented in Section 3, wraps
the valuation function associated to the monitored element
in a pre-processing function before the actual valuation and
a post-processing function after the actual valuation. Doing
so enables the monitor to capture and interpret the dynamic
state of the program before and after the evaluation of the
monitored syntactic construct.

4.1 Contribution Overview
To capture the AST traversal strategy, Kishon’s framework
assumes a continuation-passing style semantics, which con-
strains the language designer to redefine the language se-
mantics in this style. Our approach relies on the fact that the
traversal strategy is captured by the explicit invocations of
the evaluation methods of each AST node.

Based on this observation, the approach we propose uses
an AST decorator to annotate nodes to be monitored with
the monitoring construct. Fig. 2(b) shows the impact of our
strategy on the program AST and on its traversal strategy.
The + node is decorated with a monitor that associates to the
#add monitoring syntax the m.pre(...) and the m.post methods
(corresponding to the pre and post functions of the monitoring
semantics). This decoration leads to the evaluation of the
pre and post monitoring functions at the right moment by
simply extending the original language semantics with a new
valuation function associated to the decorator.

To achieve this functionality, we introduce the monitoring
pattern presented in Fig. 3. The main advantage of this pat-
tern over the monitoring semantics [17], is that the language
designer does not need to modify the standard interpreter of
the monitored DSL. It instead achieves the same functionality,
without requiring continuation-passing style semantics nor
reflection facilities, only by inheriting the standard seman-
tics from an existing interpreter and extending it with a new
valuation function associated to the Decorator (Req 6). This
valuation function 1) delegates the evaluation of the moni-
tored node to the standard interpreter, and 2) dispatches the
calls to the pre and post functions to the associated concrete
monitor.

The monitoring infrastructure shown in Fig. 3 is connected
to the standard interpreter by inheritance, which enables the
addition of monitoring without needing access to the source

74

code of the standard interpreter (e.g., for adding monitoring
to a closed-source proprietary DSL), thus satisfying Req 7.
Furthermore, compared to Kishon’s monitoring semantics, in
which the monitor syntax is disconnected from the monitor
semantics, the monitoring pattern connects the two through
the MonitorLink concepts, thus treating the monitor as a
proper language construct.

Moreover, this association has the desirable property of
contextualizing the syntax used by a monitoring tool, reliev-
ing the syntax disjointness constraint imposed in [17]. This is
essential to enable the integration of independent monitoring
tools like DSprofile [27] or Moldable Debugger [3].

Lastly, as opposed to other approaches that integrate moni-
toring into the language runtime [4, 28], the DSL monitoring
pattern ensures the isolation of the interpreter state from the
monitor state, thus offering the premises for creating a plug-
gable and composable monitoring infrastructure.

The horizontal layers in Fig. 3 highlight the separation of
the syntax (top layer) and the semantics (bottom layer), with
an intermediate layer. This intermediate layer is an object-
oriented artefact through which the syntax is linked to a
concrete semantics in a modular way. The IVisitor interface
provides a contract rooted on the syntax definition through
which a semantics can be defined. The IDecoratorVisitor
provides a similar contract for the monitoring valuation
function that is linked to the decorated AST. The decorator
pattern is used to decorate the AST. Each decoration node
(instances of Decorator) holds an instance of the MonitorLink,
which associates to each monitoring annotation its semantics,
implemented by the concrete instances of the Monitor class.

The three vertical layers in Fig. 3 emphasize the correspon-
dence with the elements of Kishon’s formal framework: the
standard interpreter (left), the monitor specification (right),
and the composition layer that connects the language to the
monitors. The following sections present each layer in de-
tail. Sec. 4.2 presents the visitor-based standard interpreter
assumed in this paper. Sec. 4.3 presents the monitor specifi-
cation layer offering the support for creating domain-specific
monitoring tools and enabling the integration of existing mon-
itoring tools. Sec. 4.4 discusses the generic composition layer
through which the monitoring tools are combined with the
standard semantics. Sec. 4.5 and Sec. 4.6 discuss two simple
extensions of the DSL monitoring pattern needed to achieve
monitor composition and support for unanticipated monitor-
ing.

4.2 Visitor-Based Standard Interpreter
Traditional object-oriented implementations of a language
interpreter leverage the Visitor design pattern. The following
paragraphs overview the conceptual link between a language
specification and its representation via the visitor pattern.

Abstract syntax tree The abstract syntax of a language is
described as a set of classes (a.k.a a meta-model). To simplify
the pattern description, Fig. 3 shows only one element of such

a set (the Element class). The different categories of syntactic
terms are identified through subclassing. Each syntactic term
implements an accept method, which, accepting a visitor
as parameter, provides an extension point through which an
arbitrary valuation function can be attached.

Semantic domains and arguments Evaluating a language
term modifies the state of the interpreter, i.e., the context of
its evaluation (environment, store, etc.). This state is specified
in the EvaluatorState class, which gathers the semantic
arguments (from the language semantic domains). These
are accessed and updated through operations defined in the
Evaluator class.

Interpreter The interpreter is specified by implementing
the IVisitor contract in the Evaluator class while binding
the template parameter of IVisitor to the semantic domain
of values (<<bind>>T- >Value), which corresponds to the
intermediate evaluation results (of the IntermediateValue
domain) in the formal framework. The valuation function
of each syntactic term is then specified by implementing the
corresponding visit method. During the AST traversal these
valuation functions are invoked through a double-dispatch on
the syntactic terms via the accept method.

4.3 Monitor Specification
To satisfy the genericity requirement (Req 3) and to facilitate
tool integration (Req 8) the monitor specification should be
treated as a proper language construct, which enables the
specification of monitoring programs. These programs would
be associated to the syntactic terms of the monitored program
and would be evaluated during AST traversal by a monitoring
evaluator that weaves the monitor semantics into the standard
semantics.

To achieve this, the monitor specification is split into two
distinct parts: the syntax and the semantics that are linked
together. In Fig. 3, the monitor syntax is represented by
the abstract Annotation class, which will be specialized in
a concrete monitor implementation to capture the monitor-
specific language. As in the monitored language, the monitor
semantic domains (i.e., its execution data) are accessed and
updated by dedicated operations. In Fig. 3, these semantics
domains are captured by the abstract MonitorState class. The
valuation functions of the monitor are captured by the pre and
post methods of the abstract Monitor class, which constains
a reference to a monitor state.

During the evaluation of the monitored program by the
monitoring interpreter when an annotation is reached, calls to
the pre and post methods wrap the evaluation of the annotated
syntactic term. During these calls the pre and post methods
evaluate the monitor syntax in the context composed of the
monitor state, which can be accessed and updated, and the
standard interpreter state, which can be queried. At this stage,
the access to the standard interpreter state can be controlled by
various policies. Implemented through a facade pattern, these
policies enable different degrees of access to the interpreter

75

Figure 3. DSL Monitoring Pattern. The classes added to realize the pattern are represented with white background.

state needed either to guarantee the non-interference of the
monitor with the standard interpreter (a read-only access
policy – Req 2) or to control the state modification (Req 10).

The instances of the MonitorLink class connects the moni-
tor syntax to its semantics. Practically, the monitor link holds
references to the annotation and to the concrete monitor val-
uation functions. When the monitoring evaluator calls the
pre and post methods, the instance of the monitor link dele-
gates these calls to the associated Monitor instance passing
the linked syntactic element as an argument. Compared to
Kishon’s monitoring semantics, in this approach the moni-
tored syntactic term is annotated not only with the monitor’s
syntax, but also with the monitor link that represents the
monitoring program along with its interpretation methods.

4.4 Composition Layer
Adding monitoring support to a DSL language runtime relies
on two operations: the annotation of the syntactic terms
of the DSL program with monitoring information, and the
interpretation of the added monitoring information during the
program execution. The monitoring pattern achieves these
two operations by extending the syntax of the language with
a decorator and by extending the language semantics with a
valuation function associated to the decorator.

Element annotation To inject annotation on the syntactic
terms, two strategies are possible: either the abstract syntax
terms are extended, as suggested in [17], to mark the presence
of monitoring information (i.e., adding an annotation attribute
to the Element class), or a new class of syntactic terms are
added to the language to decorate the existing terms. To
keep the monitoring infrastructure independent of the syntax
specification, we have employed the second strategy, which
does not require the modification of the language abstract
syntax. We achieve this by using the well known Decorator
pattern that enables adding new behavior to an existing object
without affecting the behavior of other objects of the same
class. To achieve completeness (Req 1), for each syntactic
term that needs to be monitored, we defined a Decorator
element which a) holds a reference to a MonitorLink
instance, which holds the monitoring program (See Fig. 3),

and b) defines a special accept method, presented in Listing
1, which either transparently forwards to the evaluation of
the original AST element when the execution is performed
with the standard interpreter, or dispatches the evaluation of
the Decorator to a dedicated valuation function when the
program is interpreted with the monitoring interpreter.

Listing 1. Accept method of the Decorator
public <T> T accept(IVisitor <T> v) {

if (v instanceof IDecoratorVisitor)

return ((IDecoratorVisitor)v).visit(this);

else return getOriginal ().accept(v); }

Monitoring evaluator The meaning of inheritance in a
functional setting gives a correspondance between our ap-
proach and Kishon’s monitoring semantics: the Gi functional
is transliterated into the Evaluator class, and its extension Gi
with monitoring functions becomes a specialization of the
evaluator class, namely of the MonitoringEvaluator class.

The monitors are weaved into the evaluator indirectly
through the decorated elements, which are interpreted by
the MonitoringEvaluator class. Similarly to Kishon’s moni-
toring semantics, the valuation function associated with the
Decorator wraps the valuation function of the decorated node
(accessed through double-dispatch on the syntactic term) with
the calls to the pre and post methods of the monitor (which in
our case are accessed through a MonitorLink instance). This
valuation function is implemented in the visit method of the
MonitoringEvaluator as shown in Listing 2.

Listing 2. Visit method on the MonitorEvaluation class
public Value visit(Decorator dNode) {

MonitorLink link = dNode.getLink ();

link.pre(dNode.getElement (), this);

Value result =

dNode.getElement ().accept(this);

link.post(dNode.getElement (), result , this);

return result; }

If no annotation is present, the behavior of the monitoring
interpreter defaults to the inherited standard interpreter via
its visit methods.

The decorator visit method returns the result of the original
term evaluation (without the monitoring information). The

76

Figure 4. Composable monitors by applying the composite
pattern to the MonitorLink class. The grayed classes are added
to show the relation between the composite link and the
monitoring pattern presented in Fig. 3.

resulting final monitoring state is accessed by querying
the concrete Monitor instances to which the MonitorLink
instances are associated. In doing so, the monitoring evaluator
is generic and independent of both the monitored language
and the monitoring tools (Req 3). However, in a statically
typed DSL implementation language (such as Java), a specific
Decorator class needs to be defined for each class of syntactic
term it decorates.

Through the creation of multiple decorators, visitor inter-
faces and visit methods may seem tedious, these can easily
be generated from a language meta-model definition. The
signature of such a generator function would be:

void genMonit(List<Class> terms, Class iV, Class eval),
where terms are the metaclasses corresponding to the syn-
tactic terms to be annotated, iV is the corresponding IVisitor
interface, and the eval is the Evaluator class. Such a gen-
eration function will simply generate the DSL specialized
subclasses and the needed methods required for interfacing
the existing language semantics with the monitoring tools
(the composition layer in Fig. 3).

4.5 Composable Monitors
During diagnosis sessions it can be useful to analyze the
program execution with multiple monitoring tools to obtain
aggregated monitoring results or to drive the execution of a
monitor using the results from another monitor (dependencies
between monitors). The first case is needed, for instance, by
a coverage tool that integrates statement coverage (through a
profiler-like tool) and data coverage (through a collector). A
practical instance needing support for dependencies between
monitors is a conditional breakpoint (in a debugger) enabled
by a profiling result, such as a condition over the number of
activations of a method. Neither of these scenarios is easily
supported by the existing monitoring infrastructures. More-
over, in an instrumentation-based monitoring infrastructure,
it may be difficult to distinguish the original code from the
instrumented code rendering monitoring composition very
challenging. Kishon’s monitoring semantics provides a solu-
tion to this problem by viewing the monitoring evaluator as a
standard evaluator that can be further composed with other
monitors. The result can be seen as a composite evaluator

with the standard evaluator at the root wrapped by an arbitrary
number of monitors.

In Fig. 4, we present a simple extension to the DSL
monitoring pattern in Fig. 3 that provides this functionality.
The key idea of this feature is the creation of a composite
monitor, which integrates the monitoring results of primitive
monitors organized in a hierachical manner.

Fig. 4 shows how the extension of the DSL monitoring
pattern can be achieved through the usage of the compos-
ite design pattern [9] applied to the MonitorLink class. The
MonitorLink class becomes an abstract class with two sub-
classes, the LeafLink, which connects the syntax of a monitor
to its semantics; and the CompositeLink, which aggregates
link instances (either primitive or composite). The behavior
of the pre and post methods of MonitorLink, in Fig. 3, is
moved to the LeafLink classes, and in the CompositeLink
class these methods delegate their behavior to the aggregated
LeafMonitor instances.

The application of the composite pattern to the Monitor-
Link entity guarantees the integrity of the monitors as proper
language constructs (composed of the syntax-semantics tu-
ple), which, as already mentioned, improves the modularity
of the monitors.

The support for inter-monitor dependencies is achieved
through the owner field in the abstract MonitorLink class,
which offers access to the surrounding scope of a monitor. By
accessing its surrounding scope (the composite of which it is
a part) a monitor can gain access to the state of the monitors
that dominate it in the hierarchy (much like the lexical scope
in programming languages). Through this simple extension,
the DSL monitoring pattern offers a practical support for sat-
isfying the composability requirement (Req 4). To facilitate
composition, the monitoring infrastructure should provide
an API for achieving common tasks, such as the surround-
ing scope lookup. Moreover, the monitoring tool designers
should collaborate by exposing an API for accessing the Mon-
itorState of their tools. However, these issues are outside the
scope of this paper, which focuses on providing the premises
for future work in these directions.

4.6 Unanticipated Monitoring via Pluggable Monitors
The pattern presented in this paper enables the DSL devel-
opers to perform unanticipated monitoring activities (Req 5)
by offering the possibility to create custom program moni-
tors. The monitors are picked up and evaluated by the Mon-
itoringEvaluator, which interprets the newly added moni-
toring decoration by dispatching the associated pre and post
methods. This already is an improvement over Kishon’s moni-
toring semantics that requires updating the monitoring evalua-
tor with the new monitoring pre and post functions. However,
this functionality requires the program to be executed with
the MonitoringEvaluator from the beginning.

Listing 3. Accept method for pluggable monitoring
public <T> Value accept(IVisitor <T> v) {

77

MonitorLink link = this.getLink ();

link.pre(this.getElement (), this);

Value result = this.getElement ().accept(this);

link.post(this.getElement (), result , this);

return result; }

This problem can be addressed with a simple modification
of the monitoring pattern, which enables monitor evaluation
directly using the standard evaluator. This variation, presented
in Listing 3, achieves this by integrating the pre/post methods
dispatch in the accept method of the Decorator, thus relieving
the need for a special MonitoringEvaluator class. This can
be seen as an incarnation of the AST interpreter pattern [9]
applied on the program monitoring infrastructure. In this case,
when the standard interpreter reaches a node decorated with
a monitor, the control flow of the interpreter is wrapped in
the accept method by the monitoring pre and post methods.
This variation of the pattern would be natural to implement if
the standard interpreter itself is implemented using the AST
intepreter pattern. However, in a visitor-based interpreter, it
affects the homogeneity of the language runtime implemen-
tation. Nevertheless, we believe that this loss of source-code
homogeneity is worthwhile to offer support for unanticipated
monitoring in long-running systems (Req 5).

5. An Application for Lambda-Calculus
To show the practicability of our approach, we applied the
DSL monitoring pattern to a simple functional language run-
time implemented in Java (outlined in Sec. 5.1). Through this
experience, we show that a) the monitoring infrastructure is
amenable to code generation, which eases the application of
the pattern on DSLs with a large number of syntactic terms
(Sec. 5.2); b) the monitoring pattern enables the develop-
ment of custom monitors (Sec. 5.3.1); and c) it facilitates the
integration of existing monitoring tools (Sec. 5.3.2).

The Java code of the experiments discussed here can
be found at https://github.com/monitorpattern/

sle2016. Following the specification of Kishon and Hu-
dak [16] this code equally contains a collector, and an in-
teractive debugger. Moreover, the interested readers can
check our Smalltalk instantiation of this pattern at http:
//smalltalkhub.com/#!/~CipT/MonLambda.

5.1 A Visitor-Based Interpreter for Lambda-Calculus
To illustrate our approach, we consider an (eager and call-by-
value) evaluator for a simple lambda-calculus. The abstract
syntax and domains are illustrated in the vertical standard
interpreter layer of Fig. 5. All nodes inherit the Expression
class and define traditional constructs of a lambda-calculus
language including application, abstraction, and letrec (for
conciseness the associations between the syntactic terms are
not shown in the figure).

Two semantic domains are defined: denotable values
(Value) and environments (Environment), that are maps of
entries (identifiers, values). Denotable values are either prim-
itive values (e.g., Integer) or function values (FunctionVa-

lue). The FunctionValue instances represent closures: an ex-
pression along with its declaration environment and formal
parameters. The environment has a parent attribute, which
represents the lexical scope of the current environment and a
lookup method for hierarchical variable access.

Visitor-based evaluator implementation. The context of
execution is an instance of the EvaluatorState class encapsu-
lating the environment in the form of a stack of Environment
instances. Variables are accessed in the context through a
lookup method on EvaluatorState, and constants are directly
mapped to values. An abstraction is evaluated to a Func-
tionValue instance. The evaluation of the expression inside
a function value is delayed to application evaluation. In a
conditional, the guard is evaluated first, conditioning the eval-
uation of the true or false branches. The application of an
expression e1 to an argument e2 is evaluated by evaluating
first e2 then e1, and applying the value of e1 to the one of e2.
In our case study, the value of e1 is a FunctionValue instance.
A letrec clause binding a variable x with an abstraction a and
a body expression e is evaluated as follows: a new binding
environment containing x mapped to the evaluation of its
abstraction is pushed, reflecting the recursive definition of the
environment as would be found in a typical functional-based
definition; e is then evaluated within this environment scope.

5.2 Composition Layer
Based on the language and its standard evaluation runtime
presented in the previous section, in this section we describe
the instantiation of the composition layer (Fig. 5, middle
vertical layer), which creates the bridge towards monitoring
tools. To identify the decorators needed for monitoring all the
syntactic terms of a DSL we need to analyze its AST for iden-
tifying the language constructs and their usage. Of particular
interest is the usage of specialized language constructs by the
AST nodes. All AST nodes in our case study specialize the
abstract class Expression (Fig. 5, top-left).

The Expression instances that are contained in the AST
nodes Abstraction, Application, Conditional and LetRec, can
be decorated using a unique expression decorator class (Ex-
pressionDec in the figure). However, instances of specialized
classes, i.e., which are not direct Expression instances, require
specific decorator classes. For example, the letrec construct
that binds a variable to an abstraction is defined by the LetRec
class, which is composed of a Variable and an Abstraction. As
a result, to support monitoring during the evaluation of these
instances, two new decorator classes are added (VariableDec
and AbstractionDec).

While multiple decorator classes may be needed, the ac-
cept method of these classes can be seen as parameterized
instantiations of the accept method presented in Listing 1,
which downcasts the IVisitor argument to the dedicated IDec-
oratorVisitor instance when accepting a MonitoringEvaluator
instance. In our case, the accept methods downcast the Lamb-
daVisitor instance to the IExpressionDecVisitor for an Ex-

78

https://github.com/monitorpattern/sle2016
https://github.com/monitorpattern/sle2016
http://smalltalkhub.com/#!/~CipT/MonLambda
http://smalltalkhub.com/#!/~CipT/MonLambda

Figure 5. Abstract syntax and semantic domains of a lambda-calculus

pressionDec instance, IVariableDecVisitor for a VariableDec
instance, and IAbstractionDecVisitor for and AbstractionDec
instance. Thus, when the monitoring evaluator evaluates a
decorator, according to its type, the correct visit is invoked.
The decorator visitor interfaces specialize the IVisitor inter-
face, LambdaVisitor in our case, adding a dedicated visit
method which offers the extension points for attaching the
monitoring pre/post methods.

The monitoring evaluator LambdaMonitoringEvaluator
extends the standard evaluator LambdaEvaluator with three
methods required by the decorator visiting contracts. These
methods can be seen as instantiations of the visit method in
Listing 2 parameterized by the specific decorator type.

5.3 Monitors for a Lambda-Calculus
The previous section illustrated the addition of the monitoring
pattern composition layer to a simple language runtime. In
this section we illustrate the usage of the monitor specification
layer (Fig. 5, right vertical layer) to create custom monitors,
and to integrate existing monitoring tools.

5.3.1 A Custom Tracer
A tracer records information, known as a trace, during pro-
gram execution. The traces are typically visualized and ma-
nipulated by postprocessing tools during program diagnosis.

Listing 4. A Tracer implementation
public class TracerSyntax extends Annotation {

String name; String [] args; }

public class TracerState extends MonitorState {

String trace; }

public class Tracer extends Monitor {

TracerState state;

void pre(Expression e, TracerSyntax a,

LambdaValuation eval) {

String astr = "";

for (String arg: a.getArgs ())

astr+= arg+":"+eval.getEnv ().lookup(arg);

state.addReceive(a.getName (), argstr);

state.indent (); state.add("\n"); }

void post(Expression e, TracerSyntax a,

DenotableValue v, LambdaValuation eval) {

state.outdent ();

state.addReturn(a.getName (),v.toString ());}}

The simple tracer presented in this section supports trace
collection and a tree-like visualization. Listing 4 shows
its implementation as a monitor using our approach 1. It
is composed of three classes: TracerSyntax, representing
the monitor syntax, which associates a named tracepoint
to a list of traced arguments; TracerState, representing the
semantic domain, which defines the trace structure (a String
in our case); and Tracer, representing the semantics, which
encodes the tracer valuation functions. The tracer leverages
the monitored language lookup mechanism to retrieve the
state of the function arguments.

A typical usage scenario is presented in Listing 5, which
traces the execution of a factorial function. A tracer instance
is created and assigned to a variable named tracer (line 1).
Two tracepoints are linked to the tracer instance (lines 2-3
– note that the tracer annotation is given as a string, which
supposes the existence of a specific parser): the first one
traces the execution of the multiplication expression along
with its arguments and the second one traces the execution
of the body of the factorial function, storing the x argument
in the trace. The program AST is obtained by parsing the
source-code (lines 5-8). The AST is decorated, wrapping the
traced expression with ExpressionDec instances referencing
the MonitorLink instances. In Listing 5, the decoration step
is not explicitly shown, but the [linki]exp instructions (lines
6-7) indicate the start of the subtree decorated with an Ex-
pressionDec instance 2). The decorated AST can now be
evaluated using the LambdaMonitoringEvaluator evaluator
(line 9). The program evaluation returns the standard evalua-

1 Some methods are omitted for concision, please refer to the associated
source-code for a complete reference
2 Note that the [linki]exp annotations are not part of the monitored language
syntax and in a practical setting they will be added through a specialized
IDE operation

79

tor result, 24 in our case (4! =24). The tracer can be queried
for the stored results, which in our example are in a tree-like
representation to show the depth of the recursive calls (lines
12-25).

Listing 5. Tracer usage and evaluation results
1 tracer = new Tracer ();

2 link1 = new MonitorLink ("mult(x y)", tracer);

3 link2 = new MonitorLink("fac(x)", tracer);

4

5 ast = new LambdaParser(

6 "letrec mult=\x.\y. [link1]exp (* x y) in

7 letrec fact=\x. [link2]exp if (= x 1) then 1

8 else (mult x) (fact (- x 1)) in fact

4");

9 ast.accept(new LambdaMonitoringEvaluator ());

10 tracer.printTrace ();

11 --------- TRACING RESULTS ---------

12 [#fac receives (x:4)]

13 | [#fac receives (x:3)]

14 | | [#fac receives (x:2)]

15 | | | [#fac receives (x:1)]

16 | | | [#fac returns 1]

17 | | | [#mult receives (x:2 y:1)]

18 | | | [#mult returns 2]

19 | | [#fac returns 2]

20 | | [#mult receives (x:3 y:2)]

21 | | [#mult returns 6]

22 | [#fac returns 6]

23 | [#mult receives (x:4 y:6)]

24 | [#mult returns 24]

25 [#fac returns 24]

5.3.2 Integrating an Off-the-Shelf Profiler
Profiling tools for GPLs, such as gprof [10], monitor the
execution of a program to capture control-flow information
and execution time characteristics of different syntactic terms
(e.g., function calls). Though usable for monitoring DSL pro-
grams, the GPL profilers suffer from an abstraction problem
presenting the programmer with a low-level view (execution
platform) of the execution of the DSL high-level concepts.
To bridge this gap, Sloane et al. proposed DSProfile [27], a
profiling library that is independent of the problem domain
and that, through an event-based observation mechanism, cap-
tures domain-specific profiling information in a hierarchical
model.

Listing 6. A monitor using DSProfile
public class DSProfiler extends Monitor {

Stack <Long > state = new Stack <>();

public void pre(Expression node , Annotation

ann , LambdaValuation eval) {

long sID = JavaProfiler.start(

JavaProfiler.tuple("time", node));

state.push(sID); }

public void post(Expression node ,

Annotation ann , DenotableValue val ,

LambdaValuation eval) {

JavaProfiler.finish(

state.pop(),

JavaProfiler.tuple("time", aNode)); }}

In this section, we discuss the integration of DSProfile as a
profiling tool for our external DSL, the simple lambda calcu-

14 ms total time; 14 ms profiled time (95.9%)
1003 profile records

Total Total Self Self Desc Desc Count Count
ms % ms % ms % %
14 99.6 0 0.6 13 98.9 1 0.1 [1]
13 98.9 3 26.8 10 72.1 201 20.0 [2]
13 98.4 2 17.5 11 80.9 200 19.9 [3]
13 98.3 4 33.0 9 65.3 200 19.9 [4]
1 12.1 1 12.1 0 0.0 200 19.9 (- x 1)
1 10.0 1 10.0 0 0.0 201 20.0 (= x 0)

[1] letrec fact=\x.if (= x 0) then 1
else (* x (fact (+ x -1))) in (fact 200)

[2] if (= x 0) then 1 else (* x (fact (+ x -1)))
[3] (* x (fact (+ x -1)))
[4] (fact (+ x -1))

Figure 6. Profiling result with DSProfile

lus. Listing 6 shows the profiler specification. In this case, the
monitor specification does not have an annotation attached,
because the profiler activation by the monitoring evaluator
can be seen as a syntactic indication (approach similar to
unconditional breakpoints in a debugger). For brevity, we
have decided to embed the state of this profiler, represented
by a Stack, as an instance variable in the DSProfiler class
(subclass of Monitor). The pre method of this profiler creates
a new profiling record, which associates the corresponding
AST node, and pushes the identifier of the record on the stack.
The post method closes the profiling record on top of the
stack and pops it.

Fig. 6 shows the results of profiling the execution of a
factorial function applied to the integer constant 200. The
first column shows the total time taken by the evaluation of a
profiled element, the second column shows the percentage of
the total time spent during the same evaluation. The third and
forth columns show the time (total and percentage) taken for
the evaluation of the profiled element (without sub-elements),
the fifth and sixth columns show the time spent evaluating
descendents (sub-elements of the current AST node). The
last two columns count the times each element was evaluated.
From the results we observe that the evaluation time was 14
milliseconds; the conditional was evaluated (Count column)
201 times (200 times for the recursive factorial call and once
for the default case x = 0), and the recursive call to the fact
function took 65% of the execution time.

6. Related Work
The need for easy development of DSL monitoring tools is
widely acknowledged by the programming language [11, 12,
14] and software engineering [13, 20] communities.

Frameworks, patterns [4] or generative approaches [1, 13]
facilitate the development and the integration of monitoring
tools for DSLs. For example, Bousse et al. propose a genera-
tive approach to produce specialized debuggers based on a
generic debug and trace meta-model specific to the language
domains. This approach is built on top of the GEMOC Studio
language workbench. In contrast to our approach, the rela-
tionship between the debugger and the language operational
semantics is not made explicit. Our approach could serve

80

as a layer on top of such generative approaches, to ease the
construction and the integration of other monitoring tools.

A range of approaches for defining special purpose mon-
itors for DSLs have been proposed, like debuggers [3, 28]
or profilers [25, 27]. For example, Vrany et al. [28] define a
debuggable interpreter design pattern that extends a language
interpreter with debugging operations (i.e., breakpoint, step
into, step over). The implementation of this pattern consists
of adding debugging hooks on an interpreter based on the
Visitor or the Interpreter patterns. The monitoring pattern
presented in this study can be seen as a generalization of
the debuggable design pattern where the debugger, activated
through pre/post statements, would be a particular instance
of a monitor.

Frameworks like the Moldable Debugger Model [3] for
interactive debugging or MetaSpy for profiling [25] enable
the debugging and profiling of domain-specific applications
or embedded DSLs. For example, the Moldable Debugger
Framework is aimed at monitoring at the application-level in
the sense that the runtime of the application is observed to
perform debugging actions. Moreover, both the Moldable
Debugger Model and MetaSpy rely at least partially on
meta-programming facilities (i.e., reflection mechanism), as
opposed to the monitoring pattern approach presented in
this study. Nevertheless, it will be interesting to study the
complementarity between the monitoring pattern and these
frameworks to ease the task of building interactive debuggers
for DSLs.

Jahier et al. propose a high-level monitoring primitive
based on event-oriented tracer for the target DSL [14]. In
doing so, monitors can be built separately of compilers for
the target languages. The states of a program execution
can be captured by an event list composing an execution
trace, which can be then processed through the monitoring
primitive. However, its implementation is not integrated into
a methodology. In contrast, providing a pattern offers a
guidance that can ease the definition of execution monitors. In
this sense, we believe that such an approach would integrates
better in a software engineering process.

Wang et. al propose an approach to generate infrastruc-
ture tools, based on denotational definitions using Horn
clauses [29]. However, it is not clear how development tools
(e.g., profilers or debuggers) can be generated using a com-
mon methodology, as fostered by the use of a design pattern.

Lindeman et. al propose a generic debugger genera-
tion framework, integrated in the Spoofax language work-
bench [19]. In constrast to our approach, reflection mecha-
nisms need to be provided to extract debug information.

Brant defines method wrappers for implementing moni-
toring tools [2]. This solution proposes the use of reflective
facilities of the host language to extend the behavior of ex-
isting methods with before and after statements. However,
in contrast to our approach, this technique is applicable only
to languages that support behavioral reflection, which could

further be undesirable in some cases involving security con-
straints.

General purpose Application Programming Interfaces also
exist for supporting the development of monitors [30], such
as the Eclipse Debugging Framework [6]. Such libraries can
be used with our approach to provide a graphical interface
for the monitors.

7. Conclusion
DSL program monitoring is the core infrastructure needed for
supporting the program validation and maintenance tasks. Af-
ter defining ten requirements needed for creating a DSL mon-
itoring infrastructure, this paper presented an object-oriented
design pattern for DSL program monitoring. This pattern
provides a practical answer to the problem of interfacing
monitoring tools with existing DSL runtimes. Inspired by the
monitoring semantics introduced by Kishon et al. [17], this
pattern provides an object-oriented monitoring infrastructure.
To achieve this, the language syntax and its evaluator are
simply extended through inheritance, which facilitates the
portability (Req 6) and eases the integration with arbitrary
DSL runtimes (Req 7). To achieve completeness (Req 1) our
approach proposes the use of the Decorator pattern offering
the possibility to annotate all syntactic terms. This infrastruc-
ture mediates the connection between the DSL runtime and
the different monitoring tools, thus providing a controllable
trade-off between the conflicting non-interference require-
ment (Req 2) and the potential need of breaking the language
barriers to facilitate diagnosis (Req 10) . Moreover, the moni-
toring tools are treated as proper language constructs, provid-
ing a modular and reusable conceptual framework for speci-
fying domain-specific monitors, which answer the genericity
(Req 3) and the external tool integration (Req 8) require-
ments. Furthermore, two extensions of the pattern were pre-
sented to address the composable (Req 4) and unanticipated
monitoring (Req 5) requirements.

The practicability of our approach was shown by adding
monitoring support to a simple lambda calculus. We devel-
oped a tracer illustrating the creation and usage of a custom
monitor coupled with the language runtime. The integration
of an off-the-shelf domain-specific profiler, showed that the
DSL monitoring pattern facilitates the integration of existing
tools. The DSL monitoring pattern maximizes the level of
knowledge transfer by providing a generic solution to the
monitoring infrastructure problem. This pattern can be instan-
tiated by DSL designers and supported by the developers of
domain-specific monitoring tools.

In the future, the generalization of this pattern to a mon-
itoring framework will facilitate its integration in language
workbenches, such as Spoofax [19]. Moreover, it will be in-
teresting to evaluate the adequacy of this pattern for monitor-
ing concurrent and/or parallel DSLs, which, amongst others,
poses the problem of distributed checkpoints.

81

References
[1] E. Bousse, J. Corley, B. Combemale, J. Gray, and B. Baudry.

Supporting efficient and advanced omniscient debugging for
xdsmls. In Proceedings of the 2015 ACM SIGPLAN Interna-
tional Conference on Software Language Engineering, Pitts-
burgh, PA, USA, SLE 2015, pages 137–148. ACM, 2015.

[2] J. Brant, B. Foote, R. E. Johnson, and D. Roberts. Wrappers to
the rescue. In Proceedings of the 12th European Conference
on Object-Oriented Programming, Brussels, Belgium, ECOOP
’98, pages 396–417. Springer-Verlag, 1998.

[3] A. Chiş, M. Denker, T. Gı̂rba, and O. Nierstrasz. Practical
domain-specific debuggers using the moldable debugger frame-
work. Computer Languages, Systems & Structures, 44, Part A:
89 – 113, 2015. Special issue on the 6th and 7th International
Conference on Software Language Engineering (SLE 2013
and SLE 2014).

[4] B. Combemale, X. Cregut, and M. Pantel. A design pattern
to build executable dsmls and associated v&v tools. In Pro-
ceedings of the 2012 19th Asia-Pacific Software Engineering
Conference - Volume 01, Hong Kong, China, APSEC ’12, pages
282–287. IEEE Computer Society, 2012.

[5] W. Cook and J. Palsberg. A denotational semantics of in-
heritance and its correctness. In Conference Proceedings on
Object-oriented Programming Systems, Languages and Appli-
cations, New Orleans, Louisiana, USA, OOPSLA ’89, pages
433–443. ACM, 1989. doi: 10.1145/74877.74922.

[6] Eclipse. Eclise debugging framework. http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.526.7320&rep=rep1&type=pdf, 2010.

[7] S. Erdweg, T. van der Storm, M. Völter, M. Boersma,
R. Bosman, W. R. Cook, A. Gerritsen, A. Hulshout, S. Kelly,
A. Loh, G. D. P. Konat, P. J. Molina, M. Palatnik, R. Pohjonen,
E. Schindler, K. Schindler, R. Solmi, V. A. Vergu, E. Visser,
K. van der Vlist, G. H. Wachsmuth, and J. van der Woning.
Software Language Engineering: 6th International Confer-
ence, SLE 2013, Indianapolis, IN, USA, October 26-28, 2013.
Proceedings, chapter The State of the Art in Language Work-
benches, pages 197–217. Springer International Publishing,
2013.

[8] M. Felleisen, M. Wand, D. Friedman, and B. Duba. Abstract
continuations: A mathematical semantics for handling full
jumps. In Proceedings of the 1988 ACM Conference on LISP
and Functional Programming, LFP ’88, pages 52–62, New
York, NY, USA, 1988. ACM. doi: 10.1145/62678.62684. URL
http://doi.acm.org/10.1145/62678.62684.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley Longman Publishing Co., Inc., 1995.

[10] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call
graph execution profiler. In Proceedings of the 1982 SIGPLAN
Symposium on Compiler Construction, Boston, Massachusetts,
USA, SIGPLAN ’82, pages 120–126. ACM, 1982.

[11] J. Gray, K. Fisher, C. Consel, G. Karsai, M. Mernik, and J.-P.
Tolvanen. Dsls: The good, the bad, and the ugly. In Companion
to the 23rd ACM SIGPLAN Conference on Object-oriented
Programming Systems Languages and Applications, Nashville,

TN, USA, OOPSLA Companion ’08, pages 791–794. ACM,
2008.

[12] G. Gupta. Language-based software engineering. Science of
Computer Programming, 97, Part 1:37 – 40, 2015. Special
Issue on New Ideas and Emerging Results in Understanding
Software.

[13] P. R. Henriques, M. J. V. Pereira, M. Mernik, M. Lenic, J. Gray,
and H. Wu. Automatic generation of language-based tools
using the lisa system. IEE Proceedings - Software, 152(2):
54–69, April 2005.

[14] E. Jahier and M. Ducassé. Generic and efficient program
monitoring by trace analysis. CoRR, cs.PL/0311016, 2003.

[15] A. Kennedy. Compiling with continuations, continued. In Pro-
ceedings of the 12th ACM SIGPLAN International Conference
on Functional Programming, Freiburg, Germany, ICFP ’07,
pages 177–190. ACM, 2007. doi: 10.1145/1291151.1291179.

[16] A. Kishon and P. Hudak. Semantics directed program execution
monitoring. J. Funct. Program., 5(4):501–547, 1995.

[17] A. Kishon, P. Hudak, and C. Consel. Monitoring semantics:
A formal framework for specifying, implementing, and rea-
soning about execution monitors. In Proceedings of the ACM
SIGPLAN 1991 Conference on Programming Language De-
sign and Implementation, Toronto, Ontario, Canada, PLDI ’91,
pages 338–352. ACM, 1991.

[18] T. Kosar, S. Bohra, and M. Mernik. Domain-specific languages:
A systematic mapping study. Information and Software Tech-
nology, 71:77 – 91, 2016.

[19] R. T. Lindeman, L. C. Kats, and E. Visser. Declaratively
defining domain-specific language debuggers. In Proceedings
of the 10th ACM International Conference on Generative
Programming and Component Engineering, Portland, Oregon,
USA, GPCE ’11, pages 127–136. ACM, 2011.

[20] R. Mannadiar and H. Vangheluwe. Debugging in domain-
specific modelling. In Proceedings of the Third International
Conference on Software Language Engineering, Eindhoven,
The Netherlands, SLE’10, pages 276–285. Springer-Verlag,
2011.

[21] N. Matloff and P. J. Salzman. The Art of Debugging with GDB,
DDD, and Eclipse. No Starch Press, 2008.

[22] M. Mernik, J. Heering, and A. M. Sloane. When and how to
develop domain-specific languages. ACM Computing Surveys,
37(4):316–344, Dec. 2005. doi: 10.1145/1118890.1118892.

[23] B. Plattner and J. Nievergelt. Special feature: Monitoring
program execution: A survey. Computer, 14(11):76–93, Nov.
1981. doi: 10.1109/C-M.1981.220255.

[24] U. Reddy. Objects as closures: Abstract semantics of object-
oriented languages. In Proceedings of the 1988 ACM Con-
ference on LISP and Functional Programming, Snowbird,
Utah, USA, LFP ’88, pages 289–297. ACM, 1988. doi:
10.1145/62678.62721.

[25] J. Ressia, A. Bergel, O. Nierstrasz, and L. Renggli. Modeling
domain-specific profilers. Journal of Object Technology, 11
(1):1–21, 2012.

[26] D. A. Schmidt. Detecting global variables in denotational
specifications. ACM Transactions in Programming Languages

82

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.526.7320&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.526.7320&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.526.7320&rep=rep1&type=pdf
http://doi.acm.org/10.1145/62678.62684

and Systems, 7(2):299–310, Apr. 1985. doi: 10.1145/3318.
3323.

[27] A. M. Sloane and M. Roberts. Domain-specific program
profiling and its application to attribute grammars and term
rewriting. Science of Computer Programming, 96, Part 4:
488 – 510, 2014. Selected Papers from the Fifth International
Conference on Software Language Engineering (SLE 2012).

[28] J. Vraný and A. Bergel. Software and Data Technolo-
gies: Second International Conference, ICSOFT/ENASE 2007,
Barcelona, Spain, July 22-25, 2007, Revised Selected Papers,

chapter A Debugger for the Interpreter Design Pattern, pages
73–85. Springer Berlin Heidelberg, 2009.

[29] Q. Wang and G. Gupta. Rapidly prototyping implementation
infrastructure of domain specific languages: A semantics-based
approach. In Proceedings of the 2005 ACM Symposium on
Applied Computing, Santa Fe, New Mexico, SAC ’05, pages
1419–1426. ACM, 2005.

[30] H. Wu, J. Gray, and M. Mernik. Grammar-driven generation of
domain-specific language debuggers. Software: Practice and
Experience, 38(10):1073–1103, 2008.

83

	Introduction
	Requirements for DSL Monitoring
	Background: Monitoring Semantics
	Overview of the Framework
	The Standard Interpreter
	The Monitor Specification
	The Composition: Monitoring Interpreter
	Limitations of the Monitoring Semantics
	Object-Oriented Viewpoint of Functional Concepts

	DSL Program Monitoring: The Pattern
	Contribution Overview
	Visitor-Based Standard Interpreter
	Monitor Specification
	Composition Layer
	Composable Monitors
	Unanticipated Monitoring via Pluggable Monitors

	An Application for Lambda-Calculus
	A Visitor-Based Interpreter for Lambda-Calculus
	Composition Layer
	Monitors for a Lambda-Calculus
	A Custom Tracer
	Integrating an Off-the-Shelf Profiler

	Related Work
	Conclusion

