

Object-Oriented Design Pattern for DSL Program Monitoring

Lab-STICC, MOCS Team, Brest France

Software Language Engineering, Amsterdam, 31 october 2016

Overview

- Context: Program diagnosis 4 Critical Systems
- Problem: Gap between Language Workbenches & Diagnosis tools
- Contribution: Object-oriented DSL Monitoring Pattern
- Conclusion & Perspectives

DSL-based Diagnosis 4 Critical Systems

DSL-based Critical System Infrastructure

DSL-based Critical System Infrastructure

Missing toolbox problem

{Platform⁵}

The Problem: How to make the connection ?

The Problem: Requirements

Domain-specific diagnosis - Language workbenches

DSL monitoring is the process of observing the execution of a program expressed in a DSL.

[R01] Completeness
[R02] Non-Interference
[R03] Genericity
[R04] Composability
[R05] Unanticipated Monitoring
[R10] Break the Rules

Background: Kishon's Monitoring Semantics

Kishon's Monitoring Semantics VS Requirements

[R01] Completeness
[R02] Non-Interference
[R03] Genericity
[R04] Composability
[R05] Unanticipated Monitoring

[R06] Portability
[R07] DSL Runtime Integration
[R08] Tool Integration
[R09] Minimize the Gap
[R10] Break the Rules

Object-Oriented Design Pattern for DSL Program Monitoring

Our contribution

DSL = Syntax + Semantics

Monitor = Syntax + Semantics

The monitor as proper language construct.

[*R03*] Genericity [*R08*] Independent monitor development

The monitor syntax = the annotation The monitor semantics = pre & post

The monitor semantics is dependent of the monitored DSL

through the *EvaluatorState* & *Value*

Composition Operator

[R01] decorate all terms **Only inheritance:** [R06] no reflection needed [R07] no modifications to legacy [R08] a simple link to the monitors [R01] [R02] [R03] [R04] [R05] [R06] link [R07] [R08] [R09] MonitorLink [R10]

[R04] Composable Monitors

[R01] [R02] [R03] **[R04]** [R05] [R06] [R07] [R08] [R09] [R10]

[R05] Unanticipated Monitoring

[*R02*] Non-Interference VS [*R10*] Breaking the Rules

- *IDEA*: Expose a **façade** on the EvaluatorState to the monitor
- Different access policies could be enforced
 - Non-interference: read-only access to the EvaluatorState
 - Breaking-the-rules:
 - Monitor updates the EvaluatorState through its API preserves semantics
 - Monitor accesses the Internal structure of the Evaluator more than ES
 - Monitor changes the AST potentially the EvaluatorState changes shape

Illustration : Lambda Calculus

Automatic generation of the **Composition Layer**

Monitor 1: A Simple Tracer

Usage scenario

```
tracer = new Tracer();
link1 = new MonitorLink ("mult(x y)", tracer);
link2 = new MonitorLink( "fac(x)", tracer);
ast = new LambdaParser(
  "letrec mult=\x.\y. [link1]exp (* x y) in
  letrec fact=\x. [link2]exp if (= x 1) then 1
    else (mult x) (fact (- x 1)) in fact
        4");
ast.accept(new LambdaMonitoringEvaluator());
tracer.printTrace();
```

Resulting Trace

```
[#fac receives (x:4)]
  [#fac receives (x:3)]
      [#fac receives (x:2)]
         [#fac receives (x:1)]
        [#fac returns 1]
     [#mult receives (x:2 y:1 )]
      | [#mult returns 2]
     [#fac returns 2]
      [#mult receives (x:3 y:2 )]
      [#mult returns 6]
  [#fac returns 6]
   [#mult receives (x:4 y:6 )]
   [#mult returns 24]
[#fac returns 24]
```

Monitor 3 : An external DSL Profiler

DSProfile:

- Sloane et al. SCP'16 implemented in Scala,
- used as black-box •

Profiling results:

14 ms total time; 14 ms profiled time (95.9%))
1003 profile records								
Total	Total	Self	Self	Desc	Desc	\mathtt{Count}	\mathtt{Count}	
ms	%	ms	%	ms	%		%	
14	99.6	0	0.6	13	98.9	1	0.1	[1]
13	98.9	3	26.8	10	72.1	201	20.0	[2]
13	98.4	2	17.5	11	80.9	200	19.9	[3]
13	98.3	4	33.0	9	65.3	200	19.9	[4]
1	12.1	1	12.1	0	0.0	200	19.9	(- x 1)
1	10.0	1	10.0	0	0.0	201	20.0	(= x 0)
<pre>[1] letrec fact=\x.if (= x 0) then 1</pre>								

Object-Oriented Monitoring Pattern

[R01] Completeness
[R02] Non-Interference
[R03] Genericity
[R04] Composability
[R05] Unanticipated Monitoring

[R06] Portability
[R07] DSL Runtime Integration
[R08] Tool Integration
[R09] Minimize the Gap
[R10] Break the Rules

Conclusion & Perspectives

- The DSL Monitoring Pattern*: an object-oriented solution
- Improves over Kishon's monitoring semantics
- Illustration through:
 - Simple lambda calculus
 - Creating a tracer from scratch
 - Integration of a COTS tool

Easy:

- From pattern to framework.
- Tool support for AST decoration: MPS?

*Pattern = Knowledge transfer Implementations available today: Java & Smalltalk

Not so easy

- Time & non-interference?
- Distributed monitoring

The End

Discussion & Questions

DSL Monitoring Pattern

