
Object-Oriented	Design	Pattern	
for	DSL	Program	Monitoring

Zoé.DREY

Ciprian.TEODOROV

Lab-STICC,	MOCS	Team,	Brest	France

Software	Language	Engineering,	Amsterdam,	31	october 2016

@ ENSTA-bretagne.fr

1

Overview

• Context: Program	diagnosis	4	Critical	Systems

• Problem: Gap	between	Language	Workbenches	&	Diagnosis	tools

• Contribution: Object-oriented	DSL	Monitoring	Pattern

• Conclusion	&	Perspectives

2

DSL-based	Diagnosis	4	Critical	Systems

Formal	GPL

Executable	code	in	C

High-level	toolbox:
• Prover
• Simulator/Debugger
• Profiler

Low-level	toolbox:
• Simulator/Debugger
• Profiler
• Exec.	Monitors

High-level	
properties

Low-level	
properties

Requirements

Semantic	gap

Accidental	complexity

{Platform}

Scade
B

3

DSL-based	Critical	System	Infrastructure

DSL

Executable	code	in	C

High-level	toolbox:
• Prover
• Simulator/Debugger
• Profiler

Low-level	toolbox:
• Simulator/Debugger
• Profiler
• Exec.	Monitors

High-level	
properties

Low-level	
properties

Requirements

Semantic	gap

FormalDSL

Equivalence	problem

{Platform}

statechartsMissing	toolbox	problem

4

DSL-based	Critical	System	Infrastructure

DSL

Diagnosis	Toolbox:
• Prover
• Simulator/Debugger
• Profiler
• Exec.	Monitors

High-level	
properties

Requirements

{Platform}

Missing	toolbox	problem

Executable

5

The	Problem:

Language	workbenchesDomain-specific	diagnosis

How	to	make the	connection ?

Moldable	debugger

DSProfile

Gemoc studio

K	Framework

MetaSpy

Spoofax

MPS
LTSMin

6

Language	workbenchesDomain-specific	diagnosis

[R01] Completeness
[R02] Non-Interference
[R03] Genericity
[R04] Composability
[R05] Unanticipated	Monitoring

[R06] Portability
[R07] DSL	Runtime	Integration	
[R08] Tool	Integration
[R09]Minimize	the	Gap
[R10] Break	the	Rules

The	Problem:	Requirements

DSL	monitoring	is the	process	of	observing	the	execution	of	a	program expressed	in	a	DSL.

7

Background:	Kishon’s Monitoring	Semantics

MonitorInterpreter + Monitoring	Interpreter=
Continuation
Passing-style

valuation	wrapped	
with	pre	and	post

pre:	Ann →	SynTerm → SemDomain →	MS →	MS	

post:	Ann →	SynTerm →	SemDom →	IVal →	MS →	MS 8

Kishon’s Monitoring	Semantics	
vs Requirements

[R01] Completeness
[R02] Non-Interference
[R03] Genericity
[R04] Composability
[R05] Unanticipated	Monitoring

[R06] Portability
[R07] DSL	Runtime	Integration	
[R08] Tool	Integration
[R09]Minimize	the	Gap
[R10] Break	the	Rules

9

Object-Oriented	Design	Pattern	
for	DSL	Program	Monitoring
Our	contribution

10

DSL	=	Syntax	+	Semantics

[R01]
[R02]
[R03]
[R04]
[R05]
[R06]
[R07]
[R08]
[R09]
[R10]

Compatibility	with	Visitor and	Interpreter	pattern
[R07] No	need	to	change	existing	implementations.

Visitor	pattern:
• Isolates	the	semantics from	the	syntax
• Prevents	the	mix	between	AST	data	&	evaluator	state

EvaluatorState factored	out	of	the	Evaluator
• Closer	to	the	notion	of	semantic	domains	and	valuation	functions;
• Offers	an	object	interface	dedicated	for	state	access	&	update

11

Monitor	=	Syntax	+	Semantics

[R01]
[R02]
[R03]
[R04]
[R05]
[R06]
[R07]
[R08]
[R09]
[R10]

The	monitor	as	proper	language	construct.

[R03] Genericity
[R08] Independent	monitor	development

The	monitor	syntax	=	the	annotation
The	monitor	semantics	=	pre	&	post

The	monitor	semantics	
is	dependent	of	the	monitored	DSL	

through	the	EvaluatorState &	Value

12

Composition	Operator
[R01]
[R02]
[R03]
[R04]
[R05]
[R06]
[R07]
[R08]
[R09]
[R10]

[R01]	decorate	all	terms
Only	inheritance:

[R06]	no	reflection	needed
[R07]	no	modifications	to	legacy

[R08]	a	simple	link	to	the	monitors

13

[R04]	Composable Monitors

[R01]
[R02]
[R03]
[R04]
[R05]
[R06]
[R07]
[R08]
[R09]
[R10]

14

[R05]	Unanticipated	Monitoring

[R01]
[R02]
[R03]
[R04]
[R05]
[R06]
[R07]
[R08]
[R09]
[R10]

Handle	the	pre/post	dispatch	
in	the	acceptmethod

IDecorator &	MonitoringEvaluator out

Drawbacks: code	less	homogeneous
Interferes	with	other	visitors

15

[R02]	Non-Interference	
vs [R10]	Breaking	the	Rules

• IDEA:	Expose	a	façade on	the	EvaluatorState to	the	monitor

• Different	access	policies	could	be	enforced
• Non-interference:	read-only	access	to	the	EvaluatorState
• Breaking-the-rules:	

• Monitor	updates	the	EvaluatorState through	its	API	– preserves	semantics
• Monitor	accesses	the	Internal	structure	of	the	Evaluator	– more	than	ES
• Monitor	changes	the	AST	– potentially	the	EvaluatorState changes	shape

[R01]
[R02]
[R03]
[R04]
[R05]
[R06]
[R07]
[R08]
[R09]
[R10]

16

Illustration	:	Lambda	Calculus

Automatic	generation	
of	the Composition	Layer

17

Monitor	1:	
A	Simple	Tracer

eval.getEnv().lookup(arg)

18

Monitor	1:	A	Simple	Tracer
tor result, 24 in our case (4! =24). The tracer can be queried
for the stored results, which in our example are in a tree-like
representation to show the depth of the recursive calls (lines
12-25).

Listing 5. Tracer usage and evaluation results
1 tracer = new Tracer ();

2 link1 = new MonitorLink ("mult(x y)", tracer);

3 link2 = new MonitorLink("fac(x)", tracer);

4

5 ast = new LambdaParser(

6 "letrec mult=\x.\y. [link1]exp (* x y) in

7 letrec fact=\x. [link2]exp if (= x 1) then 1

8 else (mult x) (fact (- x 1)) in fact

4");

9 ast.accept(new LambdaMonitoringEvaluator ());

10 tracer.printTrace ();

11 --------- TRACING RESULTS ---------

12 [#fac receives (x:4)]

13 | [#fac receives (x:3)]

14 | | [#fac receives (x:2)]

15 | | | [#fac receives (x:1)]

16 | | | [#fac returns 1]

17 | | | [#mult receives (x:2 y:1)]

18 | | | [#mult returns 2]

19 | | [#fac returns 2]

20 | | [#mult receives (x:3 y:2)]

21 | | [#mult returns 6]

22 | [#fac returns 6]

23 | [#mult receives (x:4 y:6)]

24 | [#mult returns 24]

25 [#fac returns 24]

5.3.2 Integrating an Off-the-Shelf Profiler
Profiling tools for GPLs, such as gprof [10], monitor the
execution of a program to capture control-flow information
and execution time characteristics of different syntactic terms
(e.g., function calls). Though usable for monitoring DSL pro-
grams, the GPL profilers suffer from an abstraction problem
presenting the programmer with a low-level view (execution
platform) of the execution of the DSL high-level concepts.
To bridge this gap, Sloane et al. proposed DSProfile [27], a
profiling library that is independent of the problem domain
and that, through an event-based observation mechanism, cap-
tures domain-specific profiling information in a hierarchical
model.

Listing 6. A monitor using DSProfile
public class DSProfiler extends Monitor {

Stack <Long > state = new Stack <>();

public void pre(Expression node , Annotation

ann , LambdaValuation eval) {

long sID = JavaProfiler.start(

JavaProfiler.tuple("time", node));

state.push(sID); }

public void post(Expression node ,

Annotation ann , DenotableValue val ,

LambdaValuation eval) {

JavaProfiler.finish(

state.pop(),

JavaProfiler.tuple("time", aNode)); }}

In this section, we discuss the integration of DSProfile as a
profiling tool for our external DSL, the simple lambda calcu-

14 ms total time; 14 ms profiled time (95.9%)
1003 profile records

Total Total Self Self Desc Desc Count Count
ms % ms % ms % %
14 99.6 0 0.6 13 98.9 1 0.1 [1]
13 98.9 3 26.8 10 72.1 201 20.0 [2]
13 98.4 2 17.5 11 80.9 200 19.9 [3]
13 98.3 4 33.0 9 65.3 200 19.9 [4]
1 12.1 1 12.1 0 0.0 200 19.9 (- x 1)
1 10.0 1 10.0 0 0.0 201 20.0 (= x 0)

[1] letrec fact=\x.if (= x 0) then 1
else (* x (fact (+ x -1))) in (fact 200)

[2] if (= x 0) then 1 else (* x (fact (+ x -1)))
[3] (* x (fact (+ x -1)))
[4] (fact (+ x -1))

Figure 6. Profiling result with DSProfile

lus. Listing 6 shows the profiler specification. In this case, the
monitor specification does not have an annotation attached,
because the profiler activation by the monitoring evaluator
can be seen as a syntactic indication (approach similar to
unconditional breakpoints in a debugger). For brevity, we
have decided to embed the state of this profiler, represented
by a Stack, as an instance variable in the DSProfiler class
(subclass of Monitor). The pre method of this profiler creates
a new profiling record, which associates the corresponding
AST node, and pushes the identifier of the record on the stack.
The post method closes the profiling record on top of the
stack and pops it.

Fig. 6 shows the results of profiling the execution of a
factorial function applied to the integer constant 200. The
first column shows the total time taken by the evaluation of a
profiled element, the second column shows the percentage of
the total time spent during the same evaluation. The third and
forth columns show the time (total and percentage) taken for
the evaluation of the profiled element (without sub-elements),
the fifth and sixth columns show the time spent evaluating
descendents (sub-elements of the current AST node). The
last two columns count the times each element was evaluated.
From the results we observe that the evaluation time was 14
milliseconds; the conditional was evaluated (Count column)
201 times (200 times for the recursive factorial call and once
for the default case x = 0), and the recursive call to the fact
function took 65% of the execution time.

6. Related Work
The need for easy development of DSL monitoring tools is
widely acknowledged by the programming language [11, 12,
14] and software engineering [13, 20] communities.

Frameworks, patterns [4] or generative approaches [1, 13]
facilitate the development and the integration of monitoring
tools for DSLs. For example, Bousse et al. propose a genera-
tive approach to produce specialized debuggers based on a
generic debug and trace meta-model specific to the language
domains. This approach is built on top of the GEMOC Studio
language workbench. In contrast to our approach, the rela-
tionship between the debugger and the language operational
semantics is not made explicit. Our approach could serve

80

tor result, 24 in our case (4! =24). The tracer can be queried
for the stored results, which in our example are in a tree-like
representation to show the depth of the recursive calls (lines
12-25).

Listing 5. Tracer usage and evaluation results
1 tracer = new Tracer ();

2 link1 = new MonitorLink ("mult(x y)", tracer);

3 link2 = new MonitorLink("fac(x)", tracer);

4

5 ast = new LambdaParser(

6 "letrec mult=\x.\y. [link1]exp (* x y) in

7 letrec fact=\x. [link2]exp if (= x 1) then 1

8 else (mult x) (fact (- x 1)) in fact

4");

9 ast.accept(new LambdaMonitoringEvaluator ());

10 tracer.printTrace ();

11 --------- TRACING RESULTS ---------

12 [#fac receives (x:4)]

13 | [#fac receives (x:3)]

14 | | [#fac receives (x:2)]

15 | | | [#fac receives (x:1)]

16 | | | [#fac returns 1]

17 | | | [#mult receives (x:2 y:1)]

18 | | | [#mult returns 2]

19 | | [#fac returns 2]

20 | | [#mult receives (x:3 y:2)]

21 | | [#mult returns 6]

22 | [#fac returns 6]

23 | [#mult receives (x:4 y:6)]

24 | [#mult returns 24]

25 [#fac returns 24]

5.3.2 Integrating an Off-the-Shelf Profiler
Profiling tools for GPLs, such as gprof [10], monitor the
execution of a program to capture control-flow information
and execution time characteristics of different syntactic terms
(e.g., function calls). Though usable for monitoring DSL pro-
grams, the GPL profilers suffer from an abstraction problem
presenting the programmer with a low-level view (execution
platform) of the execution of the DSL high-level concepts.
To bridge this gap, Sloane et al. proposed DSProfile [27], a
profiling library that is independent of the problem domain
and that, through an event-based observation mechanism, cap-
tures domain-specific profiling information in a hierarchical
model.

Listing 6. A monitor using DSProfile
public class DSProfiler extends Monitor {

Stack <Long > state = new Stack <>();

public void pre(Expression node , Annotation

ann , LambdaValuation eval) {

long sID = JavaProfiler.start(

JavaProfiler.tuple("time", node));

state.push(sID); }

public void post(Expression node ,

Annotation ann , DenotableValue val ,

LambdaValuation eval) {

JavaProfiler.finish(

state.pop(),

JavaProfiler.tuple("time", aNode)); }}

In this section, we discuss the integration of DSProfile as a
profiling tool for our external DSL, the simple lambda calcu-

14 ms total time; 14 ms profiled time (95.9%)
1003 profile records

Total Total Self Self Desc Desc Count Count
ms % ms % ms % %
14 99.6 0 0.6 13 98.9 1 0.1 [1]
13 98.9 3 26.8 10 72.1 201 20.0 [2]
13 98.4 2 17.5 11 80.9 200 19.9 [3]
13 98.3 4 33.0 9 65.3 200 19.9 [4]
1 12.1 1 12.1 0 0.0 200 19.9 (- x 1)
1 10.0 1 10.0 0 0.0 201 20.0 (= x 0)

[1] letrec fact=\x.if (= x 0) then 1
else (* x (fact (+ x -1))) in (fact 200)

[2] if (= x 0) then 1 else (* x (fact (+ x -1)))
[3] (* x (fact (+ x -1)))
[4] (fact (+ x -1))

Figure 6. Profiling result with DSProfile

lus. Listing 6 shows the profiler specification. In this case, the
monitor specification does not have an annotation attached,
because the profiler activation by the monitoring evaluator
can be seen as a syntactic indication (approach similar to
unconditional breakpoints in a debugger). For brevity, we
have decided to embed the state of this profiler, represented
by a Stack, as an instance variable in the DSProfiler class
(subclass of Monitor). The pre method of this profiler creates
a new profiling record, which associates the corresponding
AST node, and pushes the identifier of the record on the stack.
The post method closes the profiling record on top of the
stack and pops it.

Fig. 6 shows the results of profiling the execution of a
factorial function applied to the integer constant 200. The
first column shows the total time taken by the evaluation of a
profiled element, the second column shows the percentage of
the total time spent during the same evaluation. The third and
forth columns show the time (total and percentage) taken for
the evaluation of the profiled element (without sub-elements),
the fifth and sixth columns show the time spent evaluating
descendents (sub-elements of the current AST node). The
last two columns count the times each element was evaluated.
From the results we observe that the evaluation time was 14
milliseconds; the conditional was evaluated (Count column)
201 times (200 times for the recursive factorial call and once
for the default case x = 0), and the recursive call to the fact
function took 65% of the execution time.

6. Related Work
The need for easy development of DSL monitoring tools is
widely acknowledged by the programming language [11, 12,
14] and software engineering [13, 20] communities.

Frameworks, patterns [4] or generative approaches [1, 13]
facilitate the development and the integration of monitoring
tools for DSLs. For example, Bousse et al. propose a genera-
tive approach to produce specialized debuggers based on a
generic debug and trace meta-model specific to the language
domains. This approach is built on top of the GEMOC Studio
language workbench. In contrast to our approach, the rela-
tionship between the debugger and the language operational
semantics is not made explicit. Our approach could serve

80

Usage	scenario Resulting	Trace

19

Monitor	3	:	An	external DSL	Profiler

tor result, 24 in our case (4! =24). The tracer can be queried
for the stored results, which in our example are in a tree-like
representation to show the depth of the recursive calls (lines
12-25).

Listing 5. Tracer usage and evaluation results
1 tracer = new Tracer ();

2 link1 = new MonitorLink ("mult(x y)", tracer);

3 link2 = new MonitorLink("fac(x)", tracer);

4

5 ast = new LambdaParser(

6 "letrec mult=\x.\y. [link1]exp (* x y) in

7 letrec fact=\x. [link2]exp if (= x 1) then 1

8 else (mult x) (fact (- x 1)) in fact

4");

9 ast.accept(new LambdaMonitoringEvaluator ());

10 tracer.printTrace ();

11 --------- TRACING RESULTS ---------

12 [#fac receives (x:4)]

13 | [#fac receives (x:3)]

14 | | [#fac receives (x:2)]

15 | | | [#fac receives (x:1)]

16 | | | [#fac returns 1]

17 | | | [#mult receives (x:2 y:1)]

18 | | | [#mult returns 2]

19 | | [#fac returns 2]

20 | | [#mult receives (x:3 y:2)]

21 | | [#mult returns 6]

22 | [#fac returns 6]

23 | [#mult receives (x:4 y:6)]

24 | [#mult returns 24]

25 [#fac returns 24]

5.3.2 Integrating an Off-the-Shelf Profiler
Profiling tools for GPLs, such as gprof [10], monitor the
execution of a program to capture control-flow information
and execution time characteristics of different syntactic terms
(e.g., function calls). Though usable for monitoring DSL pro-
grams, the GPL profilers suffer from an abstraction problem
presenting the programmer with a low-level view (execution
platform) of the execution of the DSL high-level concepts.
To bridge this gap, Sloane et al. proposed DSProfile [27], a
profiling library that is independent of the problem domain
and that, through an event-based observation mechanism, cap-
tures domain-specific profiling information in a hierarchical
model.

Listing 6. A monitor using DSProfile
public class DSProfiler extends Monitor {

Stack <Long > state = new Stack <>();

public void pre(Expression node , Annotation

ann , LambdaValuation eval) {

long sID = JavaProfiler.start(

JavaProfiler.tuple("time", node));

state.push(sID); }

public void post(Expression node ,

Annotation ann , DenotableValue val ,

LambdaValuation eval) {

JavaProfiler.finish(

state.pop(),

JavaProfiler.tuple("time", aNode)); }}

In this section, we discuss the integration of DSProfile as a
profiling tool for our external DSL, the simple lambda calcu-

14 ms total time; 14 ms profiled time (95.9%)
1003 profile records

Total Total Self Self Desc Desc Count Count
ms % ms % ms % %
14 99.6 0 0.6 13 98.9 1 0.1 [1]
13 98.9 3 26.8 10 72.1 201 20.0 [2]
13 98.4 2 17.5 11 80.9 200 19.9 [3]
13 98.3 4 33.0 9 65.3 200 19.9 [4]
1 12.1 1 12.1 0 0.0 200 19.9 (- x 1)
1 10.0 1 10.0 0 0.0 201 20.0 (= x 0)

[1] letrec fact=\x.if (= x 0) then 1
else (* x (fact (+ x -1))) in (fact 200)

[2] if (= x 0) then 1 else (* x (fact (+ x -1)))
[3] (* x (fact (+ x -1)))
[4] (fact (+ x -1))

Figure 6. Profiling result with DSProfile

lus. Listing 6 shows the profiler specification. In this case, the
monitor specification does not have an annotation attached,
because the profiler activation by the monitoring evaluator
can be seen as a syntactic indication (approach similar to
unconditional breakpoints in a debugger). For brevity, we
have decided to embed the state of this profiler, represented
by a Stack, as an instance variable in the DSProfiler class
(subclass of Monitor). The pre method of this profiler creates
a new profiling record, which associates the corresponding
AST node, and pushes the identifier of the record on the stack.
The post method closes the profiling record on top of the
stack and pops it.

Fig. 6 shows the results of profiling the execution of a
factorial function applied to the integer constant 200. The
first column shows the total time taken by the evaluation of a
profiled element, the second column shows the percentage of
the total time spent during the same evaluation. The third and
forth columns show the time (total and percentage) taken for
the evaluation of the profiled element (without sub-elements),
the fifth and sixth columns show the time spent evaluating
descendents (sub-elements of the current AST node). The
last two columns count the times each element was evaluated.
From the results we observe that the evaluation time was 14
milliseconds; the conditional was evaluated (Count column)
201 times (200 times for the recursive factorial call and once
for the default case x = 0), and the recursive call to the fact
function took 65% of the execution time.

6. Related Work
The need for easy development of DSL monitoring tools is
widely acknowledged by the programming language [11, 12,
14] and software engineering [13, 20] communities.

Frameworks, patterns [4] or generative approaches [1, 13]
facilitate the development and the integration of monitoring
tools for DSLs. For example, Bousse et al. propose a genera-
tive approach to produce specialized debuggers based on a
generic debug and trace meta-model specific to the language
domains. This approach is built on top of the GEMOC Studio
language workbench. In contrast to our approach, the rela-
tionship between the debugger and the language operational
semantics is not made explicit. Our approach could serve

80

DSProfile:	
• implemented	in	Scala,	
• used	as	black-box

Profiling	results:

20

Object-Oriented	Monitoring	Pattern

[R01] Completeness
[R02] Non-Interference
[R03] Genericity
[R04] Composability
[R05] Unanticipated	Monitoring

[R06] Portability
[R07] DSL	Runtime	Integration	
[R08] Tool	Integration
[R09]Minimize	the	Gap
[R10] Break	the	Rules

21

Conclusion	&	Perspectives

Easy:
• From	pattern to	framework.
• Tool	support	for	AST	decoration:	MPS?

Not	so	easy
• Time	&	non-interference?
• Distributed	monitoring

• The	DSL	Monitoring	Pattern*:	an	object-oriented	solution
• Improves	over	Kishon’s monitoring	semantics
• Illustration	through:	
• Simple	lambda	calculus
• Creating	a	tracer	from	scratch
• Integration	of	a	COTS	tool

To
da
y

To
m
or
ro
w

22

*Pattern	= Knowledge	transfer
Implementations	available	today:	Java	&	Smalltalk

The	End
Discussion	&	Questions

23

DSL	Monitoring	Pattern

[R01]
[R02]
[R03]
[R04]
[R05]
[R06]
[R07]
[R08]
[R09]
[R10]

24

